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If we increase the amount of CO2 in the Earth’s atmosphere and wait 
for the climate to respond, how much warmer would surface tem-
peratures eventually get? What seems like a simple but important 

question to ask given current and projected human-induced CO2 
emissions is one that scientists have struggled with since the first 
rough estimates were made more than a century ago1,2. To answer 
that question, starting in the 1960s scientists have used energy-
balance arguments combined with observed changes in the global 
energy budget, evaluated comprehensive climate models against 
observations, and analysed the relationship between external forc-
ing and climate change over different climate states in the past (see 
Methods for a list of early publications). The idea of using those dif-
ferent lines of evidence has not changed, but progress in simulating 
climate, a longer and more accurate observed record of past warm-
ing, and better constrained palaeoclimate reconstructions now offer 
more possibilities to evaluate and constrain models. However, recent 
research has pointed out previously unknown limitations in some 
of the concepts and assumptions underlying a single constant cli-
mate sensitivity3. Although publications using various methods have 
appeared, arguably the most important recent conceptual insight 
is that feedbacks change with equilibration time, an insight that is 
based on studies in comprehensive climate models. Other recent 
insights show that the treatment of observations is important4.

Knowing to the first order how the global climate will warm in 
response to increased CO2 is critical: for unabated emissions, it is 
the difference between a hot and extremely hot future. The value 
of halving the uncertainty in that projection may be in the trillions 
of dollars5. Here we update an earlier Review6 and report recent 
progress in this area. We discuss limitations, highlight the implica-
tions for climate science and policy, discuss new metrics that relate 
the climate response directly to emissions and propose avenues for 
future research.

The climate system response to changes in the Earth’s radiative 
balance depends fundamentally on the timescale considered. The 
initial transient response over several decades is characterized by 
the transient climate response (TCR), defined as the global mean 
surface warming at the time of doubling of CO2 in an idealized 
1% yr–1 CO2 increase experiment, but is more generally quantify-
ing warming in response to a changing forcing prior to the deep 
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ocean being in equilibrium with the forcing (see Methods). Based 
on state-of-the-art climate models, and instrumentally recorded 
warming in response to CO2 and other anthropogenic and natural 
forcings, the Intergovernmental Panel on Climate Change’s Fifth 
Assessment Report (IPCC AR5) assessed that the transient climate 
response is ‘likely’ (>66% probability) to be in the range of 1 °C to 
2.5 °C (Fig. 1)7. By contrast, the equilibrium climate sensitivity (ECS) 
is defined as the warming response to doubling CO2 in the atmos-
phere relative to pre-industrial climate, after the climate reached its 
new equilibrium, taking into account changes in water vapour, lapse 
rate, clouds and surface albedo. It takes thousands of years for the 
ocean to reach a new equilibrium. By that time, long-term Earth 
system feedbacks — such as changes in ice sheets and vegetation, 
and the feedbacks between climate and biogeochemical cycles3,6,8 
— will further affect climate, but such feedbacks are not included 
in ECS because they are fixed in these model simulations. Despite 
not directly predicting actual warming, ECS has become an almost 
iconic number to quantify the seriousness of anthropogenic warm-
ing. This is a consequence of its historical legacy, the simplicity of 
its definition, its apparently convenient relation to radiative forcing, 
and because many impacts to first order scale with global mean sur-
face temperature. The estimated range of ECS has not changed much 
despite massive research efforts. The IPCC assessed7 that it is ‘likely’ 
to be in the range of 1.5 °C to 4.5 °C (Figs 2 and 3), which is the same 
range given by Charney in 1979. The question is legitimate: have we 
made no progress on estimating climate sensitivity?

Constraints from the instrumental record and variability
ECS and TCR cannot be measured directly, but in principle they 
can be estimated from: (i) quantifying feedbacks, ECS, and TCR in 
comprehensive climate models; (ii) potentially constraining mod-
els by their representation of present-day mean climate and vari-
ability; (iii) analysis of the post-industrial observed warming of the 
ocean and atmosphere in response to forcing; (iv) the short-term 
climate response to forcing (such as volcanic eruptions) or inter-
annual temperature variations; and (v) palaeoclimate records (for 
example, the cooling at the Last Glacial Maximum or the warming 
during earlier warm periods). A summary of estimates are shown 
in Figs 1, 2 and 3.
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The use of the recent warming as a constraint is attractive, as 
greenhouse gases have ‘likely’ caused 0.5 °C to 1.3 °C of warming 
(>66% probability) over the period 1951−2010, whereas there is 

also ‘very likely’ a human contribution to upper-ocean warming7. 
However, estimating ECS and TCR from the instrumental record 
requires a conceptual or physical model10. In the simplest form, the 
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Figure 1 | Overview of published best estimates and ranges for the transient climate response constrained by different lines of evidence. Different colours 
represent different studies. Dots mark means, medians or best estimates; lines mark different percentile ranges. The grey shaded range marks the 1 °C to 2.5 °C 
range within which the TCR is ‘likely’ to lie (probability >66%) as assessed by the IPCC, the grey vertical line indicates a value of 3 °C above which TCR is 
‘extremely unlikely’ (<5%). Details and assumptions are given in the text, the Methods section and Supplementary Table 1.
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difference between the radiative forcing (F) today and the subse-
quent change in radiation (λT) resulting from the surface warming 
(T) needs to be equal to the net energy uptake (Q) of the system: 
Q = F–λT (see refs 3,6 for details). Over 90% of the excess energy, 
Q, is taken up by the ocean, so Q is usually taken equal to the global 
ocean heat uptake. The inverse of the climate feedback parameter, 
λ, is the estimated climate sensitivity parameter in °C per W m–2, 
which is converted to ECS by multiplying it with the forcing for 
2 × CO2 (about 3.7 W m–2). The ratio of T/F estimates TCR11. In 
principle, observations of T and Q combined with a model-based 
estimate of F therefore determine ECS and TCR. Other approaches 
evaluate which values of ECS or TCR in models best reproduce 
observed patterns in space and time of surface and ocean warming. 
Related detection and attribution approaches separate the response 
to greenhouse gases from that to other drivers and variability to 
estimate TCR and ECS (see Methods for details and references). 
In all of these methods, uncertainties in forcing (particularly from 
aerosols) are a key driver of the overall uncertainty: energy budget 
estimates use the overall magnitude of F directly, whereas in pat-
tern-based methods the uncertainty in the space–time patterns of 
forcing limits confidence in separating the response to greenhouse 
gases from that to aerosols. 

Many recent estimates of ECS based on historic warming yield 
a reduced probability for large ECS, reduced lower bounds, and 
most likely values near 2  °C. This is reflected in the shift of the 
IPCC assessed lower limit of the ‘likely’ range from 2  °C in AR4 
to 1.5 °C in AR5 (Fig. 2), and supports the statement that it is ‘very 
unlikely’ that ECS is greater than 6 °C. A tightened range of ECS 
from historical climate change can be attributed to longer records 
measured at (nominally or actually) higher precision and with bet-
ter coverage particularly in the ocean, such that the forced signal 
emerges more clearly from variability12,13, and a larger estimate of 
total radiative forcing (as a result of increasing GHG concentrations 
and a smaller, less negative aerosol forcing7,14). Warming rates have 
been somewhat lower between about 1998 and 2013 compared to 
decades before15, which tightens some estimates16 but not others17. 
Following some criticism18,19 recent estimates generally use multiple 
prior assumptions in order to evaluate to what extent results hinge 
on those assumptions20; some use ‘objective Bayesian methods’18. 
Results illustrate that prior assumptions particularly matter for the 
likelihood of high ECS.

Uncertainty ranges in individual studies are affected by the 
often-simple models used (see section ‘Limitations and future 
research avenues’), and by assumptions made, including those 
about forcing and internally generated variability21. Recently it has 
also been recognized that results that compare model surface air 
temperature with observed sea surface temperature over ocean — 
together with biases due to uncaptured warming in some regions — 
may underestimate equilibrium and transient warming4,22. Often 
labelled as ‘observational’, these methods do rely on models: both 
to provide forcing estimates, such as aerosol forcing, and to link 
forcing to climate response through energy balance models. Hence, 
observational estimates are complementary to methods using 
comprehensive models, but have their own uncertainties.

Since TCR is determined by the ratio of observed warming to 
forcing, the observed warming constrains TCR better than ECS, as 
evident by the closer agreement of ranges arising from TCR estimates 
between each other and with those from climate models (Fig. 1).

Constraints from climatology, feedbacks and models  
The values of ECS and TCR from comprehensive fully coupled 
climate models — which embed our best understanding of the 
relevant feedbacks — are one line of evidence and provide a 
plausible range that is consistent with a variety of observations. 
With the advance of perturbed physics ensembles (that is, one 
climate model run with multiple parameter sets exploring 

uncertainty more systematically) and the Coupled Model 
Intercomparison Project (CMIP) multi-model ensembles23, 
studies on ‘emergent constraints’ became another prominent 
and complementary line of argument. The idea is to downweigh 
models with large biases, or to find well-understood relationships 
between an observable quantity in the present day and future 
projections, and thus use observations to constrain the range 
of models. In many cases, correlations of observable quantities 
to TCR and ECS are weak, but some studies find relationships 
between atmospheric mixing, humidity or radiative fluxes and 
ECS (see Methods). Open issues are the choices of metrics for 
emergent constraints or weighting, and the fact that many models 
share code or parameterization concepts and are therefore not 
independent. There is strong evidence, however, that a credible 
representation of the mean climate and variability is difficult to 
achieve in current models with equilibrium climate sensitivities 
below 2  °C, and current GCMs favour sensitivities near 3  °C or 
above (see Methods). This is consistent with the argument that 
water vapour and lapse rate combined would almost double the 
black-body response to near 2  °C, and with the surface albedo 
feedback being positive, a substantially negative cloud feedback (or 
a large part of the recent warming being of natural origin) would 
be needed to explain a low sensitivity24,25, which is not supported 
by observations and attribution studies7. Recent progress in 
estimating cloud feedbacks therefore leads to a null hypothesis for 
ECS above 3  °C based on the robustly quantified feedbacks26–29. 
Few studies have used climatological mean constraints30 or 
decadal prediction bias tendencies to constrain TCR31. Overall, 
the raw range of ECS values in CMIP5 as well as emergent 
constraints from selected observations and CMIP5, and analysis 
of feedbacks favour the upper half of the IPCC ECS range (Fig. 3).

Constraints based on palaeoclimate
Constraints on ECS also arise from palaeoclimate studies, which 
relate long-term temperature responses to changes in the planet’s 
energy balance and have made significant progress in recent years 
(see Methods, also reflected in several studies shown in Figs 1 
&  3). Estimates derived from the palaeoclimate record are based 
on a response that is often close to equilibrium, but are affected by 
uncertainty in reconstructed past climate and forcing, both of which 
are inferred from indirect evidence that may not be spatially rep-
resentative or may be responding to multiple factors, uncertainties 
that are difficult to quantify. The majority of estimates arise from 
the Last Glacial Maximum (LGM) or the last few glacial cycles. 
Most of that period was substantially colder than present, driven 
by the albedo effect of large ice sheets, reduced greenhouse gases, 
dust forcing, changed vegetation cover and different orbital forcing. 
If climate models include these changes, reconstructed cooler sea 
surface temperatures in the tropics, and colder global temperatures 
are reproduced reasonably well, although with spatial uncertainty. 
Most but not all estimates of ECS that are based on model-data fit of 
these reconstructed ranges for models with different values of ECS 
support the range of 1.5 °C to 4.5 °C and yield ECS higher than 5 °C 
to 6 °C as unlikely (see Fig. 3, refs 7,8 and Methods). Uncertainties 
in reconstructed temperatures and forcing become larger when 
moving into the more distant past.

Palaeoclimate evidence and modelling suggest that Earth sys-
tem feedbacks, such as the growth of ice sheets in response to 
cooling during the LGM, enhance the response to a long-term 
change in CO2, acting as further long-term feedback, as do vegeta-
tion changes and changes in dust. In the studies shown in Fig. 3, 
these feedbacks are generally treated as a forcing and not part of 
ECS. However, when considering predictions into the far future, 
Earth system feedbacks will come into play and will probably 
enhance warming anticipated from ECS on timescales of centuries 
to millennia. 
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Roe and Armour (2011); median and 90% 
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Huber et al. (2011); median and likely range 
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Masters (2014); median and 90% 
Bodman et al. (2013); median and 90%
Lewis (2014); median and 90% 
Schwartz et al. (2014); range consistent with observations and AR5 likely forcing range 
Urban et al. (2014); median and 90% 
Lovejoy (2014); mean and standard error 
Kummer and Dessler (2014); central value and 90% see paper for uncertainty 
Skeie et al. (2014); mean and 90% 
Lewis and Curry (2015); median and 90% 
Loehle (2014); best estimate and 95% 
Cawley et al. (2015), correcting Loehle (2014); 95% 
Loehle (2015); best estimate 
Marvel et al. (2015); mean and 90% 
Johansson et al. (2015); mode and 90% for data until 1986 
Johansson et al. (2015); mode and 90% for data until 2011 
Monckton et al. (2015); mean and consistent model parameter
Lewis (2016); median and 90% 
Bates (2016); "in the neighborhood" 
Armour (2017); best estimate and 90% 

0 2 4 6 8 10

Figure 2 | Overview of published best estimates and ranges for equilibrium climate sensitivity constrained by different lines of evidence. As 
with Fig. 1, but the grey shaded range marks the 1.5 °C  to 4.5 °C range within which the IPCC have assessed that ECS is ‘likely’ to lie (probability 
>66%), the grey vertical lines indicate a value of 1 °C below which ECS is ‘extremely unlikely’ (<5%), and a value of 6 °C above which ECS is ‘very 
unlikely’ (<10%). Details and assumptions are given in the text, Methods section and the Supplementary Table. Supplementary Figure 1 provides a 
combination of Figs 2 and 3.
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Discrepancy and lack of progress?
A striking feature of Figs 2 and 3 is that evidence from climate mod-
elling favours values of ECS in the upper part of the ‘likely’ range, 
whereas many recent studies based on instrumentally recorded 
warming — and some from palaeoclimate — favour values in the 
lower part of the range. Since each line of evidence is affected by 
different uncertainties, their uncertainty ranges should encompass 
the ‘true value’ but the ranges do not need to be identical. It is, 
however, important to understand the differences, as discussed in 
the following sections. In principle, the consistency of informa-
tion across the partially independent lines of evidence should fur-
ther reduce uncertainty in ECS, as illustrated in Fig.  2  for a few 
published attempts using combined constraints.

As a result of some recent low ECS estimates, the central ‘likely’ 
range assessed by the IPCC7 was wider than the 2 °C to 4.5 °C range 
in the previous report, and no best estimate was given. However, 
the outer boundaries were better constrained than before, render-
ing it ‘extremely unlikely’ (<5%) that ECS is less than 1 °C (high 
confidence), and ‘very unlikely’ (<10%) that it is greater than 6 °C 
(medium confidence), based on the combined evidence.

The IPCC7 assessed that TCR is ‘likely’ be in the range of 1 °C to 
2.5 °C (close to the estimated 5% to 95% range of the CMIP5: 1.2 °C 
to 2.4 °C) and ‘extremely unlikely’ (<5%) to be greater than 3 °C. 
For TCR, a few climate models with the largest TCR are outside 
of the 5% to 95% range estimates derived from the instrumentally 
recorded warming, but some of this may be affected by the treat-
ment of observations (see below and Methods) and variability. In 
general, the GCM ranges and those from the observed warming are 
more consistent for TCR than ECS.

Limitations and future research avenues
For comprehensive climate models, the biggest concern is that they 
share some limitations (for example, finite resolution, parameter-
ized convection and so on) and are evaluated against the same 
imperfect observations, so they may be biased in a similar way. 
Clouds have long been (and still are) the largest uncertain feed-
back7,32,33, in particular in the stratocumulus subsidence regions 
over tropical oceans. It will take decades before clouds can actu-
ally be resolved in climate change simulations using global mod-
els because of the required resolution, even if computing capacity 
continues to increase as it has. Climatological fields and warm-
ing over the twentieth century are taken as a constraint for model 
evaluation explicitly in many institutions, but models are not tuned 
to specific values of ECS. Whether there is a tendency for model 
developers to keep ECS in an ‘acceptable’ range is unclear. Given 
the skewedness of ECS from feedback theory, and the fact that it is 
challenging to produce a substantially negative cloud feedback, it is 
much easier to produce a model with good performance on mean 
climate and a climate sensitivity above the IPCC range than one 
below. Despite all limitations in models, the range of ECS across 
‘best-effort’ models has been stable at around 2 °C to 5 °C for dec-
ades, and fundamental understanding of feedbacks and climato-
logical mean constraints are very difficult to reconcile with a very 
low ECS (see Methods).

Evidence from observed climate change is also uncertain. 
Observational uncertainty remains, even for the most recent 
decades, and like-with-like comparison of data is important4,22. 
Also, natural variability superimposes on the forced trend and 
causes uncertainty even for multidecadal trends12,13. This is usually 
addressed by using internal variability estimates, although in some 
cases quite simple ones, or by including modes of variability as 
explanatory variables or covariates. However, it is not always clear 
to what extent such modes partly reflect the response to forcing — 
the Atlantic Multidecadal Oscillation (AMO), for example, may 
partly be a response to volcanic and aerosol forcing. Furthermore, 
forcing is a key uncertainty: although some studies argue for a 

smaller (less negative) aerosol forcing14, others argue for a larger 
aerosol radiative forcing uncertainty than used by the IPCC34, both 
of which would affect ECS estimates. The magnitude of the pre-
industrial aerosol baseline is also important but hard to constrain35.

The most pressing issue, however, is the growing concern that 
assuming a single constant λ is unrealistic. Doing so would imply 
that the equilibrium climate sensitivity for CO2 doubling in a 
fully coupled model is the same as the effective climate sensitivity 
extrapolated from a transient simulation36, yet many simple models 
interpreting the observed record are just assuming such a constant 
feedback. It also neglects differences in the temperature response 
to forcing that are not captured by a forcing efficacy. Feedbacks, 
however, are spatially heterogeneous. They are not necessarily lin-
ear with increasing temperature37, and the total response depends 
strongly on the spatial pattern of warming38–42, which changes over 
time. Despite characterizing equilibrium, ECS therefore — just like 
TCR43,44 — strongly depends on the ocean heat uptake and circula-
tion response, which modifies the pattern of atmospheric warming. 
It was pointed out long ago that the transient feedback may be a poor 
estimate of ECS36,45,46, but recent studies provide stronger evidence 
for substantial state and time dependence of the global feedback: 
for CO2 forcing exclusively, and for the historical period3,38,41,47–62. 
As one example, Fig. 4a shows the estimated temperature response 
and radiative imbalance from the National Center for Atmospheric 
Research (NCAR) community Earth system model (CESM) result-
ing from a step increase to 4 × CO2. The initial years are simulated 
many times for different initial conditions to get a precise estimate 
of the forced response. The evolution in CESM clearly deviates 
from a straight line implied by a constant feedback. The slope of 
the regression λ is also not constant for most other CMIP5 models 
due to both short-term atmospheric and oceanic adjustments, and 
due to feedbacks and warming patterns changing over time.

Other concerns are that feedbacks may not be additive, and the 
climate response depends on the type and magnitude of the forc-
ing37,61,63–80. Additional difficulties arise in separating forcings and 
feedbacks27,80,81, and defining appropriate forcings that account for 
short-term atmospheric and oceanic adjustments82–91. The slope of 
the regression as a measure of the feedback may further depend 
on the climate base state, and the particular observed realiza-
tion of natural variability in the real world. Most of these effects 
sketched in Fig. 4b that potentially affect the total feedback can-
not be quantified robustly at this point. Current understanding, 
however, indicates that estimates of ECS based on the instrumen-
tal warming and a constant λ model are biased low, as indicated 
by the curvatures in Fig. 4a. The delayed Eastern tropical Pacific 
and Southern Ocean warming in the observed historical period 
— combined with feedbacks changing as the warming pattern 
changes, plus the composition of the historical forcing and an 
underestimation of the observed warming (see Methods) — imply 
that ECS estimates assuming constant λ are probably underesti-
mated3,4,54,59–62. In principle, climate models can be used to study 
how feedbacks vary, but different models show different changes 
in λ, so the bias in the ECS estimated from historical data when 
assuming constant λ may be anywhere from near zero to about a 
factor of two54,59,60,65,68,92. Accounting for changes in feedbacks and 
the observation issues largely resolve the apparent discrepancies 
between the estimates from the observed warming and those from 
comprehensive models.

Testing if simple methods work by estimating known ECS and 
TCR from complex models93 may help improve energy-balance 
models50,51. Now that the observations are longer and less uncertain, 
and the warming signal becomes stronger relative to variability, the 
observations provide much stronger constraints even on ECS. This 
is why limitations in the model structure become more important, 
and these can potentially be understood when such methods are 
evaluated in perfect model tests.
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Conclusions and implications for research and policy
The goal of this Review is not to come up with a single number or 
range for ECS based on a rigorous mathematical framework. Indeed 
that is very challenging given the various methods, assumptions, 
datasets and models used in all of the studies. Our overall assess-
ment of ECS and TCR is broadly consistent with the IPCC’s7, but 
concerns arise about estimates of ECS from the historical period 
that assume constant feedbacks, raising serious questions to what 
extent ECS values less than 2 °C are consistent with current physi-
cal understanding of climate feedbacks. A value of around 3 °C is 
most likely given the combined evidence and the recognition that 
feedbacks change over time. A rough sketch of the three main con-
straints as probability density functions (PDFs) is given in Fig. 5a 
(see Methods for details). For uniform priors and independent 
constraints, the PDFs could simply be multiplied94,95. However, 
combining multiple lines of evidence in a formal statistical way is 
difficult: independence is difficult to establish, joint PDFs would 
need to be combined, and uncertainties that are poorly quantified 
or neglected will eventually render the result unreliable6. The prod-
uct here results in a combined constraint that is very narrow and 
probably overconfident. When the individual PDFs of GCMs and 
palaeoclimate are, just for illustration (Fig.  5b), inflated in their 
lower and upper bounds to account for potential structural prob-
lems, state-dependent feedbacks and dependency across the lines 
of evidence, and in addition the mismatch between the historically 

inferred and future sensitivity4,59,60 is accounted for by extending 
the historical PDF upward (see Methods), the combined evidence 
from the three PDFs would still yield a rather narrow range, con-
straining ECS to 2 °C to 4 °C with a most likely value near 3 °C. 
However, this toy model does not replace a full assessment. Indeed 
the single biggest future challenge (and opportunity at the same 
time) is to combine the different lines of evidence, taking into 
account the dependence between them and avoid overconfidence 
due to missing uncertainty in individual lines of evidence32.

The IPCC-assessed ranges of ECS and TCR are supported by 
multiple lines of evidence, each based on many published studies 
that account for uncertainty to varying extents, and are combined 
by an expert assessment accounting for overall uncertainty. This 
is in sharp contrast to Charney in 19799, who quoted the same 
ECS range, but whose argument was based on physical intuition 
and results from only two early climate models, which by any 
standards today would be considered inadequate.

Uncertainties in projections may not decrease quickly in the 
future96, but there are promising avenues for future research. The 
greenhouse gas induced warming will continue to strengthen 
the constraint on TCR and ECS as warming continues97,98, but 
accounting for variations in feedbacks over time and variations in 
feedbacks across forcings remains a major challenge. Model-based 
estimates of ECS and TCR now more fully account for model 
uncertainty, and much hope lies in the use of more detailed process 
understanding — combined with better observations and higher 
computational capacity — to better quantify individual feedbacks. 
Emergent constraints provide another avenue to further reduce 
uncertainty99. Super-parameterizations and large-eddy simula-
tions offer new opportunities to better represent clouds100,101. Using 
GCM ensembles for palaeoclimate studies and for the historical 
period allow to better use spatial information, to estimate how past 
warming or cooling relates to future warming as feedbacks vary 
over time102. The challenge then, is that climate model information 
(and potential biases) are part of each line of evidence, making 
them less independent.

When a PDF of ECS or TCR is required for impact studies or 
economic models, we recommend selecting carefully among the 
published estimates, using those that include recent data when the 
constraints become stronger, and add further structural uncer-
tainty that often is not considered in individual estimates. There 
is no reason to give all published PDFs equal weight. A preferable 
option is to use an overall range based on an assessment combin-
ing the evidence32. Cost–benefit studies are particularly sensitive 
to assumptions about the tails of ECS and TCR PDFs103.

A pressing issue is to eliminate the confusion between different 
concepts of climate sensitivity and to agree on a target quantity 
that most meaningfully quantifies the climate response to CO2, and 
to investigate whether thinking about it as a universal, constant, 
climate system property is meaningful at all. Almost all GCMs, 
and studies based on the instrumental period actually estimate 
an effective sensitivity (the measure of the feedbacks over some 
past or near future period, extrapolated to equilibrium assuming 
in most cases constant feedbacks) rather than a true equilibrium. 
Palaeoclimate estimates are near equilibrium but have to account 
for Earth system feedbacks. Given the huge computational costs 
and large differences in model behaviour when approaching the 
equilibrium, we need to rethink the timescale for which climate 
sensitivity is defined in the most helpful way. We also need to 
better quantify how the different quantities — TCR, effective cli-
mate sensitivity, near-equilibrium  sensitivity (for example, after 
300 years of stable forcing, or within 0.5 W m–2 global imbalance) 
and true ECS — are related59, and which of these many quantities 
is most relevant for which question.

Knowing a fully equilibrated response is of limited value for 
near-term projections and mitigation decisions104, and the social 
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Figure 4 | Illustration of feedbacks changing in result to various boundary 
conditions. a, Top-of-atmosphere radiative imbalance as a function of 
global mean surface temperature (annual mean values) for CESM (dark 
grey and different timescales highlighted in colours) and CMIP5 models 
(light grey), illustrating the change in the global feedback over different 
time periods and the implications on equilibrium climate sensitivity. 
b, Conceptual illustration of the different processes, boundary conditions 
and forcings that can cause such changes in the global feedback parameter 
and climate sensitivity (slope and intercept of the line, respectively).
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anchoring on ECS105 detracts from what science can in fact say 
about future warming. The TCR is more relevant for predicting 
climate change over the next century, relates more clearly to the 
social cost of carbon106, is better constrained by instrumentally 
recorded climate change, and the emerging warming signal (com-
bined with the well-known CO2 forcing becoming increasingly 
dominant over the declining aerosol forcing) is likely to constrain 
it further and faster98,107. Some earlier studies indicate that the 
CMIP5 long-term temperature projections may be slightly biased 
towards a high temperature108,109, whereas others suggest the oppo-
site110,111. But given the most recent data, knowledge of coverage 
issues and the difficulties of calibrating TCR based on past trends 
(see above), we argue that there is no evidence that the CMIP5 
projections are biased. The overall assessed-temperature range by 
the IPCC is broader than the CMIP model range7,112. In terms of 
policy, and from a risk perspective, it is important to know the 
upper bound on TCR and ECS when limiting warming to 2 °C or 
1.5 °C with high probability113.

The arguably most powerful recent new insight for mitigation 
decision is that transient warming is nearly proportional to the 
total emitted carbon. This concept is captured in a parameter called 
the transient climate response to cumulative carbon emissions 
(TCRE), and is another central emerging climate system property. 
It is defined as the global temperature change for 1,000 GtC of car-
bon emissions.  The IPCC estimated that the TCRE is ‘likely’ (>66% 
probability) to be in the range of 0.8 °C to 2.5 °C per 1,000 GtC 
(1 GtC = 1015 grams of carbon = 3.67 GtCO2) for emissions up to 
about 2,000 GtC and until temperatures peak (see Methods). Even 
though the limits of the TCRE concept remain to be fully under-
stood, TRCE relates climate targets more directly to emission 
reductions needed than ECS114: any temperature target implies a 
limit on the cumulative emission budget. To ‘likely’ remain below 
2 °C, about two-thirds of the total ‘permitted’ emissions have been 
emitted already7,115. The remaining budget at current emissions 
would last only about 30 years, and less for a 1.5 °C target or if a 
more realistic pre-industrial temperature baseline is chosen116,117. If 
TCR and ECS were lower than currently assessed (for which there 

is little evidence), that would allow for only slightly less aggres-
sive mitigation, but not eliminate the need for decarbonization of 
society. Mitigating non-CO2 forcings also offers little flexibility in 
achieving the 2 °C goal118. Reducing the uncertainty range of the 
allowable cumulative carbon budget is more important for miti-
gation decisions than knowing ECS. But even more pressing are 
the debates about fair contributions for each country in reducing 
emissions, helping others to do so, and adapt119–121, and the lack of 
willingness to step up and lead the pack122. Current and proposed 
mitigation efforts are inconsistent with what would be required 
for the 1.5 °C or 2 °C target114,123, and even these are politically dif-
ficult. Better quantifying climate feedbacks and climate sensitivity 
is not necessary for eliminating those roadblocks.

Methods 
Methods, including statements of data availability and any 
associated accession codes and references, are available in the 
online version of this paper.
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Methods
After some early estimates with varying definitions of ECS1,2,124–126, scientists in the 
1960s started to use energy-balance arguments combined with observed changes 
in the global energy budget since the beginning of the industrialization127–132, to 
use more-or-less comprehensive climate models to study feedback processes and 
evaluate them against observations133–139 and to study different climate states in the 
past140–142, all in the hope to constrain future climate change. The following sections 
provide definitions; details about the methods used in most common categories; 
references; and discuss selected results and limitations of more recent studies. 
The discussion is focused on ECS but many studies also provide estimated TCR 
based on the same or similar methods. Some studies are reviews, a combination of 
methods, or otherwise do not easily fit into any of the categories below6,143–147.

Definitions and timescales. Radiative forcing is defined as the changes in the radi-
ation balance at the tropopause as a result of external drivers such as greenhouse 
gases and aerosols before the surface responds, but different definitions exist for 
different purposes7,86,87,91 and the forcing is not easily separable from the response 
in the real world and even the models. The warming following a step change in 
radiative forcing is characterized by multiple timescales, which are related to the 
climate model feedbacks3,60,93,148–160: a large fraction of the response occurs within 
years to a few decades (40–50% after a decade, 60–70% after a century). The tran-
sient climate response (TCR) — defined as the global mean surface warming at a 
doubling of CO2 in an idealized 1% yr–1 CO2 increase experiment of a climate mod-
els — characterizes the temperature response on timescales of decades to a century. 
It agrees well with the transient climate sensitivity concept and hence captures 
the warming in response to forcing before the deep ocean has equilibrated161. For 
predictions over the next several decades TCR is therefore the most relevant pre-
dictor48,112,162–164. The ocean–atmosphere system only approaches equilibrium with 
a radiative forcing (about 90% after 1,000 years) when the deep ocean is close to 
equilibrium as well. The timescales of equilibration (and therefore the ratio of TCR 
to ECS) depend on ocean mixing and ECS3,6,11,128,130,136,148,150,162,165–172. Equilibrium cli-
mate sensitivity (ECS) is defined as the equilibrium warming after doubling CO2 in 
the atmosphere, but disregarding Earth system feedbacks. The radiative forcing for 
a doubling of CO2 is about 3.7 W m–2 (ref. 173). When estimating an effective cli-
mate sensitivity through linear regression36, CMIP5 models suggest that 3.4 W m–2 

is a more representative value (ref. 7, Table 9.5). But because of atmospheric and 
oceanic adjustment processes on various timescales and changing feedbacks there 
is no consensus on what value to use for radiative forcing in simple models, and 
by which method to estimate it for different applications7,84,86,91,174. Further difficul-
ties arise in defining forcing for species other than CO2. In state-of-the-art climate 
models, the warming to equilibrium beyond present day, but based on present day 
atmospheric concentrations, ranges between about 0.6 °C and 2.5 °C (refs 7,93).

Constraints from feedback analysis. IPCC AR5 estimated that the combined 
lapse rate and water feedback is ‘extremely likely’ (>95%) positive, and cloud and 
albedo feedbacks are ‘likely’ positive. Together, this leads to ‘very high confidence’ 
that these feedbacks amplify the warming of about 1.1 °C that would occur without 
feedbacks. Recent studies based on individual feedback analysis suggest that ECS 
should be near or above 3 °C based on well quantified feedbacks, with additional 
uncertain cloud feedbacks either increasing or decreasing that value26–28. Inferring 
the uncertainty in ECS, the inverse of the total feedback, is challenging in par-
ticular when the total feedbacks are strong, and results in a poorly constrained 
upper bound146,175–179. Non-constant feedbacks (see section ‘Limitations and future 
research avenues’ in the main text) are another strong argument that constraining 
feedbacks might be more helpful than constraining ECS180. A caveat on analysing 
individual feedbacks is that there are covariances between feedbacks.

Constraints from the observed transient warming. A variety of mostly energy 
balance models and statistical methods have estimated ECS and TCR based on 
some form of the energy balance concept Q = F–λT, where F is the calculated total 
radiative forcing, Q is the observed planetary heat uptake, λ is the climate feedback 
parameter and T is the observed total surface warming from all forcings. These 
methods either infer ECS or TCR from a present-day warming in response to forc-
ing relative to an earlier baseline period, or fit simple models to the observations 
while varying sensitivity, ocean heat uptake and scan forcing uncertainty in order 
to determine what values of these parameters combined yield consistent simula-
tions of the historical record11,12,16,18,21,44,169,181–213, or fitting other statistical models to 
the observed warming214–216. Results from these methods are affected by assump-
tions such as a constant feedback parameter, and also need a realistic model for 
internal climate variability. A few more complex models have also been constrained 
with both past trends and climatology217,218.

Detection and attribution methods are based on the physical mechanisms of 
greenhouse gas forcing causing a characteristic space–time pattern of warming, 
for example, more warming over land than ocean, delays in the response to radia-
tive forcing driven by the thermal inertia of the ocean, cooling from aerosols being 
concentrated in certain regions, as well as a vertical pattern of warming in the 
troposphere and cooling in the stratosphere. They relate only the greenhouse gas 
attributable warming to the greenhouse gas forcing to estimate mostly TCR (or 
equivalently near term warming in a scenario)17,108,109,163,219–224. Thereby they circum-
vent the large uncertainty in the total radiative forcing due to the aerosols, but are 

affected by uncertainty in the model-simulated fingerprints that are matched to 
observations, and in the assumption that forced responses approximately superim-
pose linearly. A detailed discussion of each study is beyond the scope of this Review, 
but previous reviews and assessments6,7,225 discuss most individual studies and find 
an overall ‘likely’ (>66% probability) range of about 1 °C to 5 °C. The aerosol forcing 
in theory can also be estimated from changes in the water cycle, but observations 
are insufficient and model errors too large to successfully do it at this point226.

Most of the above results depend on the sources of uncertainties considered 
(for example: whether all forcing components or just the aerosol is assumed 
to be uncertain); on the structure of the model227; the length and type of data 
and its uncertainties that are used12,16; and on assumptions for priors and likeli-
hoods18–20,185,193, more so for the earlier studies where the anthropogenic signal was 
weaker and observational uncertainties were larger than for the newer ones. Many 
studies are affected by the limitations of assuming constant feedbacks for all climate 
states and forcings in energy balance models, as discussed in the main text. This 
limitation, along with incomplete coverage and the blending of sea surface with 
land air temperature data4,22,228, probably biases results of many such studies low.

These energy balance and attribution results are consistent with estimates 
explicitly using the energy budget and radiative forcing estimates229, using under-
standing of feedbacks and processes as evident from observations and models3,230, 
and with observed and simulated changes in the global energy budget150,231–241. 
Observed trends in clouds are also detectable and some are consistent 
with models242.

Estimates of TCR are generally better constrained by the recent warming, but 
TCR depends on the state of the ocean when initialized43,243–245 and, as with ECS, 
measures the response to CO2 forcing only. Another important open question is 
the relation of inconstant feedbacks and TCR: the more feedbacks change through 
time the less representative TCR will be of the overall model behavior.

Results from both energy balance methods and detection and attribution 
can directly be used to generate future warming estimates for scenarios that are 
constrained by past warming108,112,181,182,185,192,209,219–222,246–250. Some results indicate 
that the observed warming is now powerful enough to reduce the range of predic-
tions provided by models, for example, by ruling out models with the strongest 
response as less likely108,221, but more recent studies indicate that some of these 
might have underestimated observed changes by comparing with model surface 
air tempreature rather than sea surface temperature over oceans4. The dependence 
on the model and assumptions in the method251 also question the robustness of 
those results.

A number of other statistical methods have been used to infer ECS from vari-
ous historical and palaeo time-series252–255. Inferring the long term response from 
short term variability, for example, through a flux dissipation theorem, has been 
tried since the 1970s256–264. However, short-term climate variations have long been 
known to provide a poor and unreliable constraint on the long term response132,169. 
Short-term variations in the energy budget can be informative to compare feed-
backs in models and observation, and relate them to long-term feedbacks in the 
form of an emergent constraint24,225,265–268, but feedbacks depend on the timescale 
and are different for variability231,269,270. The results in such studies also hinge on 
assumptions on the response timescales, and are affected by limitations of simple 
models fitted. Many estimates based on those methods have therefore been criti-
cized; we generally have low confidence in relying on them in this assessment, but 
provide further references to studies and critical comments here for complete-
ness7,24,56,93,225,231,259,269,271–301. Similarly, the response to volcanic eruptions provides 
a test for models302 but in our view the implications for ECS are unclear since the 
timescale and type of forcing is very different, the feedbacks arising are different, 
and the response is difficult to separate from El Niño variability185,303–311. It has 
also been attempted to estimate TCR from the observed temperature response to 
the sunspot cycle312. The resulting estimate is higher than those based on other 
approaches and may be affected by different feedbacks for solar forcing and 
possibly aliasing of other forcings. 

Constraints from climatology. The raw distribution or range of ECS and TCR 
simulated by models has been used in some studies313–315, but the interpretation 
of that range is unclear as the model space is not sampled systematically and 
the degree of tuning of models is unknown316,317. But comprehensive models are 
routinely evaluated against climatological fields, including interannual variability 
and trends, and specific feedbacks are quantified318–320. Such evaluations of major 
feedbacks in a process based climate model can also be used to determine ECS 
by correlating observable quantities to ECS or TCR. In most cases correlations 
of general climatological mean patterns and variability to ECS or TCR are weak 
or model-dependent23,321–326. Despite the fact that newer models agree better with 
observations7,96,327,328, their spread in the climate response has not decreased96,112, 
possibly because most observations have already been used to evaluate models329. 
Yet there have been studies that have constrained individual relevant feedbacks 
like the sea ice, snow albedo or cloud feedbacks180,265,330 and their implication 
on projections331,332.

Robust evidence based on many studies using Peturbed Physics Ensembles 
(PPEs) and CMIP show that a credible representation of the mean climate and 
variability is difficult to achieve with ECS below 2 °C, good agreement with obser-
vations favours values in the 2 °C to 4.5 °C range, and most likely ECS values are 
close to or above the CMIP mean of about 3.2 °C once emergent constraints are 
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included99,110,180,324,333–356, consistent with studies constraining individual feedbacks 
suggesting that the net feedbacks are not small26–28,357–360. Questions remain about 
shared model biases and tuning techniques361–363, the robustness of emergent 
constraints in ensembles of opportunity364,365 and whether those ensembles sam-
ple the full range of ECS and TCR consistent with observations, in particular 
on the low end109,227. Although high ECS values (in rare cases above 10 °C) were 
found in some PPE simulations, these are found to be much less likely based on 
model’s climatology than values in the range of 2 °C to 4.5°C326,333–335,366–368. The 
largest source of model spread continues to be related to low level clouds and 
convection27,32,33,318,319,369–379.

Results based on emergent constraints depend on the metrics used110,324,380–390. 
A further issue is that the number of truly independent climate models in the 
overall ensemble is limited, and results may be biased towards near duplicate 
models23,110,328,383,388,391–396. As a result of the underlying small sample size, screening 
for predictors may lead to apparent relationships that are unphysical or unreli-
able324,337,365,397,398. As a result, weighted ensembles may be overconfident if the 
number of models is small or variability is large399.

Palaeoclimate. Palaeoclimate is a useful testbed for simple and complex climate 
models400–405 and numerous studies have estimated climate sensitivity from past 
periods, in particular the Last Glacial Maximum or the last few glacial cycles, 
but also the Holocene and warm periods millions of years back95,102,400,406–426. 
Uncertainties in some individual studies are small but the range across studies is 
similar to the range derived from other methods. Many studies find that climate 
sensitivity in the present and future differs from that inferred from past colder (gla-
cial) or warmer states407,414,427–432, whereas others find little state dependence433,434. 
Including vegetation and ice-sheet feedbacks can cause negative feedbacks435,436, 
but the overall Earth system sensitivity resulting from all feedbacks is consistently 
estimated to be higher than ECS8,420,437–445. This implies that ECS based on atmos-
phere–ocean climate models will underestimate warming on millennial timescales. 
If Earth system feedbacks are treated as additional forcings, as they generally are 
for example in ECS estimates from the Last Glacial Maximum, then the overall 
assessed palaeoclimate constraints7,8,446 also support the consensus range of ECS, 
including its upper bound, but do not constrain it further. 

Expert elicitations. A number of studies have summarized expert elicitations on 
ECS and TCR447–449. These largely agree with the conclusions here, but are obviously 
assessing the same studies. There is a desire for more formalized elicitations but 
this has not been done for ECS and TCR450. Sometimes such elicitations are used as 
prior information when estimating ECS183. However, the information used by the 
experts is not independent from that used to provide a posterior distribution.

The transient climate response to cumulative carbon emissions.There is strong 
and robust evidence from a variety of models that the transient warming, largely 
due to the long residence time of CO2 in the atmosphere, is approximately propor-
tional to the total CO2 emitted115,120,192,223,451–463, even though towards stabilization 
that proportionality does not hold in all models when emissions cease464–469. The 
proportionality arises from an approximate cancellation of multiple nonlinear 
effects, including the decrease in additional radiative forcing per unit CO2 at higher 
concentrations, the change in carbon sinks and therefore increase in the airborne 
fraction with emission rates and warming, and the unrealized warming in the 
system (TCR being lower than ECS).

Illustrative combined constraint. In Fig. 5a, the PDF for ECS estimated from the 
historical period is based on Q = F–λT (see main text) using Gaussian distribu-
tions for Q = 0.8 ± 0.3 W m–2, F = 2.0 ± 0.6 W m–2, T = 0.8 ± 0.1 °C. The values 
are chosen to be approximately consistent with recent published estimates and to 
produce a PDF that reflects the range in recent studies11. The radiative forcing for 
2 × CO2 is assumed to be the standard value of 3.7 W m–2 used in most studies. 
For the PDF of CMIP we assume a Gaussian distribution with 3.3 ± 0.7 °C for ECS 
centered on the CMIP5 mean, for palaeoclimate a Gaussian distribution with 3.0 
± 0.7 °C. Values indicate ±1 standard deviation. The combined constraint as the 
product of the three PDFs94 is shown in black along with ‘likely’ (66%) and ‘very 
likely’ (90%) ranges. For a revised combined constraint (Fig. 5b) we scale up the 
observed warming by 20 ± 15% (ref. 4), use a forcing of 3.4 W m–2 for 2 × CO2 that 
may be more appropriate for such regressions (see above), and scale up the sensi-
tivity inferred from the twentieth century by 30 ± 30% to account for changes in 
feedbacks (see above, and ref. 59). The width of the CMIP and palaeoclimate PDFs 
is doubled to account for biases and uncertainties not otherwise accounted for (for 
example, feedbacks changing from cold to warm states, structural model biases), 
and for dependencies between estimates. We emphasize that such a toy model is 
insufficient for an assessment, and that other, defensible decisions would lead to 
slightly different overall ranges. However, it illustrates the value, and the challenges, 
of combining all the lines of evidence.

Notes on figures. Figures 1, 2 and 3 show published ranges of ECS and TCR over a 
wide range of studies with different assumptions and definitions of climate sensitiv-
ity. Some studies provide PDFs, others just ranges, with our without proper statistical 
descriptions of what those are. Some studies provide multiple ranges, in which case 
subjective judgement was used to select the most relevant or representative one. More 

details are given in the supplementary online table. Some studies show quite different 
ranges compared to other lines of evidence. However, many of these have not held up 
to tests estimating a model’s known sensitivity, robustness tests or evaluation of their 
assumptions. These studies, those estimating somewhat different quantities, those 
arguing that there is no reliable constraint, and all those before 2008 (approximately 
predating the IPCC AR4 in 2007 and our earlier Review) are marked in grey to 
indicate that those might not be the most reliable estimates, although we recognize 
that this is a judgement call and others might come to slightly different decisions on 
grey versus coloured lines. The overall aim of the figures is to show the wide range of 
research on this topic, realizing that a like-with-like comparison of different estimates 
is difficult. The categorization, discussion and assessment of the many studies is solely 
the view of the authors of this review, but the overall conclusions do not depend on 
these choices. 

Figure 4 includes simulations of 4 x CO2 forcing scenarios with the follow-
ing CMIP5 models as grey lines (each 150 years long): ACCESS1-0, ACCESS1-3, 
bcc-csm1-1-m, bcc-csm1-1, CanESM2, CCSM4, CNRM-CM5, CSIRO-Mk3-6-0, 
FGOALS-g2, GFDL-CM3, GFDL-ESM2M, GFDL-ESM2G, inmcm4, IPSL-
CM5A-LR, IPSL-CM5B-LR, MIROC5, MIROC-ESM, MPI-ESM-LR, MPI-
ESM-MR, MPI-ESM-P, MRI-CGCM3, NorESM1-M. For CESM 3,675 years of 
a simulation with a step change to 4 x CO2 are shown, based on data from ref. 3. 
The implied ECS numbers are the extrapolation of the blue, red and orange lines 
to zero imbalance, divided by two to obtain the values for CO2 doubling instead 
of quadrupling.
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