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ABSTRACT
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fertilization effect using data from NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite. 
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fertilization effect: a 1 ppm increase in CO₂ equates to a 0.4%, 0.6%, 1% yield increase for corn, 
soybeans, and wheat, respectively. In a thought exercise, we apply the CO₂ fertilization effect we 
estimated in our sample from 2015-2021 backwards to 1940, and, assuming no other limiting 
factors, find that CO₂ was the dominant driver of yield growth—with implications for estimates 
of future climate change damages.
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Understanding the drivers of agricultural productivity is important for economic growth

both within the farm sector as well in as other sectors. The adoption of high-yield varieties,

for example, had significant positive economic spillovers for the larger economy in India

(Gollin, Hansen, and Wingender 2021) and other countries more generally (McArthur and

McCord 2017). The “Green Revolution” brought about a massive increase in crop yields

across the world. In the US, for example, corn yields increased six-fold since 1940, while

soybeans and wheat increased by a factor of three. Prior to this point, however, yields were

flat, as shown in Figure 1.

By extension, the agricultural sector experienced a marked change in productivity growth

(Jorgenson and Gollop 1992). Before 1950, US farm sector productivity growth was half

that of the non-farm sector, but afterwards the relationship reversed with farm productivity

growth exceeding the non-farm sector by 62% (Pardey and Alston 2021). Factors such as in-

creased input usage, mechanization, irrigation, and improved crop genetics all contributed to

yield growth (Wang, Heisey, Schimmelpfennig, and Ball 2015). However, because aggregate

US farm output increased several-fold while the aggregate quantity of inputs (land, capital,

labor, and materials) stayed flat, technology is generally seen to have driven agricultural

productivity growth.

This paper argues that carbon dioxide (CO2) fertilization1 may help illuminate the puz-

zling conclusion of Jorgenson and Gollop (1992): why did productivity growth explain over

80% of agriculture’s postwar growth but less than 15% in the non-farm economy? During

this time, both atmospheric CO2 and crop yields were steadily increasing as shown in Fig-

ure 1. The physiological response of plants to CO2 is well-known: CO2 drives photosynthesis

and has long been used as a greenhouse input to boost yields. Increasing CO2 has driven

global greening: over the last 40 years, half of the world’s vegetated area has undergone

greening2, of which 70% is attributed to elevated CO2 (Zhu et al. 2016).

Our paper investigates the extent to which elevated CO2 contributed to the observed

increase in crop yields during this time. Establishing a causal link between two trending vari-

ables is statistically challenging. CO2 has risen smoothly in tandem with crop yields as well

as other factors such as mechanization and input use. Industrialization, both in agriculture

and other sectors, might have independently increased CO2 levels as well as yields—making

it all the more difficult to disentangle CO2 fertilization from other productivity drivers.

1The CO2 fertilization effect is defined in the scientific literature as the increase in photosynthetic activity
in response to elevated CO2. In this paper, we use the term more specifically to refer to an outcome of
increased crop yields.

2This paper defines ‘greening’ as an increase in the growing season integrated leaf area index.
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To date, field experiments are the most common approach to attribute yield trends to

CO2 levels. There are clear advantages to such experiments, i.e., the ability to isolate

change in one variable: CO2. This approach, however, faces challenges of its own. The

conditions in a well-controlled experiment might not be indicative of real-world farming

conditions. Large regional differences in crop responses to CO2 reflect geographic variation in

crop distribution and environmental conditions (McGrath and Lobell 2013). CO2 fertilization

may be negligible in the presence of limiting factors such as nutrient deficiency (Kimball et al.

2001, Hungate, Dukes, Shaw, Luo, and Field 2003, Reich et al. 2006, Ziska and Bunce 2007).

The effect is generally stronger under water deficit conditions (Ottman et al. 2001, Leakey,

Uribelarrea, Ainsworth, Naidu, Rogers, Ort, and Long 2006, Keenan, Hollinger, Bohrer,

Dragoni, Munger, Schmid, and Richardson 2013, Morgan et al. 2011), with the exception

of soybeans (Gray et al. 2016) and possibly rice (Zheng, He, Guo, Hao, Cheng, Li, Peng,

and Xu 2020). Elevated CO2 may increase high temperature stress due to stomatal closure

(Batts, Morison, Ellis, Hadley, and Wheeler 1997).

Differences in observed outcomes across controlled experiments suggest that the CO2

fertilization effect crucially depends on other limiting factors and field conditions; yet, there is

only one major agriculture-focused CO2 enrichment experiment in the breadbasket Midwest,

SOYFACE, which is located at the University of Illinois and focused mainly on soybeans.

Whether this one experiment station is representative of actual growing conditions is hence

doubtful.

There are other downsides of controlled field experiments: they can suffer from significant

measurement error due to the difficulty of controlling elevated CO2 concentrations in turbu-

lent air (Allen, Kimball, Bunce, Yoshimoto, Harazono, Baker, Boote, and White 2020). In

other words, the CO2 that is pumped into the experimental plots might dissipate too quickly

or lead to large pulses in CO2 rather than achieve the permanent level of elevated CO2 the

experiment is designed to simulate. Complicating matters further, a decline in the global

carbon fertilization effect over time has been documented, likely attributable to changes in

nutrient and water availability (Wang et al. 2020). While CO2 enrichment experiments have

generated important insights into the physiological channels of the fertilization effect and its

environmental interactions, they are limited in the extent to which they reflect real-world

growing conditions in commercial farms across a large geographic scale.

To this end, we employ a new approach to estimating the effect of CO2 on crop yields

that relies neither on process-based models nor on localized field experiments—while also

allowing us to analyze the majority of the US cropland. We use observed ambient CO2 data
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from NASA’s Orbiting Carbon Observatory-2 (OCO-2) satellite and county-level crop yield

data. The OCO-2 satellite detects changing ambient CO2 levels that occur within and across

locations and growing seasons (Crisp 2015). While CO2 mixes in the atmosphere, there are

temporal and spatial deviations due to differences in CO2 sources and sinks as well as wind

patterns that can be leveraged (see Appendix Figure A3 for an illustration from 2019). We

focus on the US, which is the biggest producer of corn and soybeans, accounting for 33% of

global production (FAOSTAT) over OCO-2’s sample timeframe from 2015-2021, and 7% of

global wheat production.

We use several empirical approaches that isolate both time-series and cross-sectional

variation in our CO2 measurement. The major identification concern involves CO2 anomalies

being correlated with other factors that influence crop yields. One could imagine several

such confounders related to agricultural practices, fossil fuel production, urbanization, and

large-scale weather systems. While we control for such factors when possible, we employ

two other empirical strategies to aid in identification: a wind instrument for CO2 exposure

using upwind concentration to address endogeneity concerns and a spatial first-difference

approach that isolates differences between neighboring counties to reduce the effect of any

regional confounders by differencing them out. Our results are robust to myriad sensitivity

checks, i.e., the functional form (logarithmic versus levels), whether the temporal trend is by

state or county, sample selection, and the choice of controls for co-occurring air pollutants.

We find large fertilization effects in the US: a 1 part per million (ppm) increase in CO2

equates to a 0.4%, 0.6%, 1% yield increase for corn, soybeans, and winter wheat, respectively,

in our baseline panel model, and the results hold across linear and non-linear specifications.

Our estimates are high compared to those found in the agronomic literature, a fact we discuss

and attempt to rationalize in section 5. More generally, these results shed light on a driver

of yield growth that is usually taken as exogenous. The recent literature has used panel

variation to estimate climate change damages by relating outcomes of interest to random

exogenous year-to-year weather fluctuations (Dell, Jones, and Olken 2014). This approach,

which relies on annual variation in weather, does not take into account longer-term dynamics

which are correlated with climate change. Consequently, part of the estimated damages may

be offset by yield gains from rising CO2.

Our findings are relevant in several contexts. First, in providing an example of how

satellite-based measures of CO2 can complement field experiments to ensure external validity

of the effect of CO2 on agriculture and ecosystem functioning at a large scale. We provide

evidence that the satellite measures are closely aligned with daily measures taken by low

4



flying aircraft (Figure A5) and hence a reliable source of information.

Second, our finding that CO2 fertilization has driven a large portion of the historical

increase in crop yields has implications for how we think about the drivers of agriculture

productivity growth, which has very large economic spillovers (Gollin et al. 2021), and the

contribution of environmental factors versus technological change to this growth.

Third, our results have relevance for estimating the impact of climate change on agricul-

ture. There is a gap between process-based studies of climate change which incorporate CO2

fertilization and statistical ones which tend to omit it (Lobell and Asseng 2017), and the

resulting estimates of climate impacts can vary greatly. For example, one study finds the net

welfare effect on agriculture to be negative in the absence of CO2 fertilization but negligible

with fertilization (Moore, Baldos, and Hertel 2017a).3 And because the welfare effects of

climate change vis-a-vis agriculture vary across regions (Nath 2020, Hultgren et al. 2022),

such inequalities may be exacerbated if the CO2 fertilization effect varies across crop types

and environmental conditions, as many previous articles have found. The implication is

that yields in areas with few limiting conditions (e.g., nutrient deficiency), which tend to be

higher to begin with, might grow more than in areas facing greater constraints. This would

widen the yield gap and change the comparative advantage between countries (Costinot,

Donaldson, and Smith 2016).

Finally, we emphasize that the strong fertilization effect we find occurs under current

CO2 levels and current environmental conditions. Given that the experimental evidence

shows a tapering of the CO2 fertilization effect at increasing levels, a linear extrapolation

of our estimates into the future must be considered with caution. While previous studies

have projected weather changes into the future, such extrapolation could at least be partially

justified by the fact that yield differences to existing cross-sectional differences in climate

where similar to those obtained from weather variation in the panel, i.e., we currently observe

areas that are hotter which provide a counterfactual to what would happen under warming

to places that are currently colder. On the other hand, cross-sectional difference in CO2 are

minor and hence do not give us any information on what might happen if these substantial

increase in the future.

Nevertheless, this is an important issue for climate policy. Recent work places the social

cost of carbon (SCC) at $185 per ton CO2, with agricultural impacts contributing $84 per ton,

or almost half of the total cost. But the uncertainty described above in regards to interactions

3Some argue that CO2 fertilization is understood well enough to be directly included in global climate
models and impact projections (Toreti et al. 2020).
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between CO2, temperature, and crop yields produces a wide confidence interval around

agriculture’s contribution to the SCC ranging from -$23 to $263 per ton CO2 (Rennert et al.

2022, Moore, Baldos, Hertel, and Diaz 2017b). Our results suggest that CO2 fertilization

might be larger than predicted by field experiments, which would lower the SCC given

that the detrimental effects of more heat are at least partially offset through higher average

yields. Given the welfare implications and importance to climate policy, we believe that

additional research is merited into the CO2 fertilization effect, including statistical analyses

using satellite data that can complement CO2 field experiments and process-based models

and help overcome their limitations.

Our paper proceeds as follows: Section 1 provides some background on the CO2 fertiliza-

tion effect and current estimates. Section 2 data section describes how we construct our CO2

anomaly measure from the OCO-2 satellite data product, as well as the other datasets used

in this analysis. Section 3 describes our identification strategies and empirical approaches

before Section 4 presents our regression results along with robustness tests. Implications of

these results are discussed in Section 5 by exploring scientific and policy implications of our

study before Section 6 concludes and summarizes our main findings.

1 Background on CO2 fertilization

Plants respond directly to rising CO2 through photosynthesis and stomatal conductance,

which is the basis for the fertilization effect (Long, Ainsworth, Rogers, and Ort 2004,

Ainsworth and Rogers 2007). This response has been known for over 200 years. The role of

CO2 in plant growth was first demonstrated in 1796 by Swiss botanist Jean Senebier, and

CO2 gas has long been pumped into greenhouses to spur photosynthesis and increase the

yield of horticultural crops, especially during daytime hours when photosynthesis reduces the

amount of available CO2 in the greenhouse. The fact that greenhouse operators choose to

pump CO2 into their chambers showcases that CO2 is an input that meaningfully enhances

yields. Optimal levels are reported to be in the range of 800-1000 ppm, more than twice

current atmospheric CO2 concentrations of 415 ppm (Wang, Lv, Wang, and Shi 2022).

The fertilization process varies by crop type. For C3 crops like soybeans, wheat, and

rice, mesophyll cells containing RuBisCO4 are in direct contact with the air. RuBisCO is

an enzyme that fixes atmospheric CO2 during photosynthesis and in oxygenation of the

resulting compound during photorespiration. Thus, higher ambient CO2 increases photo-

4RuBisCO is the name of an enzyme short for ribulose-1,5-bisphosphate carboxylase-oxygenase
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synthetic CO2 uptake because RuBisCO is not CO2-saturated at today’s atmospheric levels

(Long et al. 2004). For C4 crops like corn, on the other hand, RuBisCO is located in bundle

sheath cells, where CO2 levels are several times higher than atmospheric levels. At this

concentration, RuBisCO is CO2-saturated, and there may not be a direct photosynthetic

response to changing atmospheric CO2 levels. However, C4 yields are still indirectly af-

fected through increased water use efficiency via reduction in stomatal conductance (Long,

Ainsworth, Leakey, Nösberger, and Ort 2006). All things being equal, one would expect a

larger CO2 fertilization effect for wheat and soybeans than for corn.

Historical estimates of yield responses to CO2 came from controlled experiments in labora-

tories and greenhouses where CO2 levels can easily be controlled. An early survey concluded

that doubling ambient CO2 increased yields by 24 to 43% for C3 crops in the context of full

water and nutrient availability (Kimball 1983), which aligned with USDA reporting a 33%

increase in yields for most crops under similar settings (Allen Jr., Baker, and Boote 1996).

Another study estimated that CO2 could have accounted for 15% US soybean yield growth

from 1972 to 1997 (Specht, Hume, and Kumudini 1999).

In recent decades, free-air concentration enrichment (FACE), a process involving a series

of pipes in fields emitting CO2, has allowed for larger-scale trials in more realistic crop

growing conditions. A survey of over 25 years of FACE experiments concludes that increasing

CO2 from 353 to 550 ppm results in 19% higher C3 yields, on average, while C4 crops were

only affected under conditions of water scarcity (Kimball 2016). FACE experiments tend to

show a lower fertilization effect than either laboratory or greenhouse enclosure studies (Long

et al. 2006). However, recent work has pointed out potential measurement error, arguing

that FACE estimates should be adjusted upward by 50% to account for the effect of air

turbulence and CO2 fluctuations (Allen et al. 2020). Geographic extent is also limited: there

are only two long-standing FACE experiments in the US that focus on agriculture: Arizona

FACE in Maricopa, AZ, and SOYFACE in Champaign, IL—with only the latter located

in the traditional Midwestern breadbasket. We also note recent work that utilized OCO-2

satellite data to estimate the impact of the 2019 Midwestern floods on CO2 uptake and crop

productivity (Yin et al. 2020).

2 Data

Our primary measure of atmospheric CO2 comes from the Orbiting Carbon Observatory-2

(OCO-2). Launched in 2014, OCO-2 is NASA’s first satellite designed specifically to measure
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atmospheric CO2 with the goal of better understanding the geographic distribution of CO2

sources and sinks and their changes over time. We downloaded the bias-corrected OCO-

2 LITE Level 2 v10 product, specifically the ‘XCO2’ value of averaged dry air CO2 mole

fraction (i.e., part per million, or ppm) over the atmospheric column.5 The satellite has a

sun-synchronous orbit with an equatorial crossing time at 13:30 hours and a repeat cycle of

16 days. There are 8 distinct soundings with spatial footprints less than 1.29 km by 2.25

km each, encompassing an overall swath less than 10 km. A typical daily output contains

over 150,000 XCO2 global readings, including the latitude-longitude point. Readings have

quality flags (about 50% of readings), which we exclude from our analysis.

We then calculate the CO2 anomaly that represents how much more or less CO2 is

observed in a given place and time relative to what would be expected in light of naturally

occurring seasonal patterns and global time trends. Since the non-flagged observations occur

at different times of the growing season, we adjust CO2 values from OCO-2 to make them

comparable by accounting for the annual pattern in which ambient concentrations decrease

in the spring and summer when plants are actively photosynthesizing and increase in the

fall and winter when plants are respiring on net.6 We identify CO2 anomalies relative to

this pattern by estimating the average seasonality over the contiguous US with a 4th-order

Chebyshev Polynomial over the year, which we normalize to [-1,1] by transforming January

1st to equal -1 and December 31st to equal 1 with leap years having an additional day. We

restrict the seasonality so the value on January 1 (time -1) equals the value on December

31 (time 1). Figure A1 displays the seasonality in CO2 in the OCO-2 data. We further

include a time trend to account for the annual increase in CO2 at the global level. We then

re-normalize our seasonality-adjusted values to July 1st of each year, i.e., by adjusting a daily

value by the differential between the average value for that day of the year and July 1st.

Next we assign each seasonally-adjusted OCO-2 reading to the PRISM grid in which our

weather data is available (1/24° grid in latitude and longitude, or roughly 4.5km). Readings

are averaged if there are more than one for a grid during the growing season from April to

September. Crop area footprints for each PRISM grid are obtained by aggregating USDA’s

Cropland Data Layer at 30m resolution to the PRISM grid (4.5km resolution), i.e., by

counting how many of the 30m × 30m pixel centroids within a PRISM grid are classified

as each crop. The PRISM grids within a county are then averaged using these measures of

5Available: https://disc.gsfc.nasa.gov/datasets/
6Local CO2 concentrations also exhibit strong diurnal within-day variation (Idso, Idso, and Balling Jr

2002, Xueref-Remy et al. 2018), but because the OCO-2 satellite is sun-synchronous and revisits points at
the same time each day, this is not a concern for our study.
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corn, soybean, or winter wheat area in the PRISM grid.7 The resulting seasonality-adjusted

CO2 level is a single value in ppm for each county-crop-year.

Figure A2 displays the resulting number of observations per county and by crop that

have both CO2 readings and annual yield data over the seven years from 2015 to 2021 with

OCO-2 data. Given the 16-day revisit time, the high resolution, and the size of the median

US county (1,610 km2), a reading is not obtained for each US county in each year. Since

we include both county fixed effects and county-specific time trends, we need at least three

degrees of freedom per county, i.e., we can only include counties with at least 3 observations

in our regressions.

For weather, we use a recalculated version of the fine-scale PRISM data at the same

2.5 minute resolution, or 4.5 km by 4.5 km that keeps the set of weather stations constant

over time. We follow the approach from Schlenker and Roberts (2009), which found that

four weather variables (two temperature, two precipitation) predict yields well. The two

temperature variables are degree days 10-29◦C (moderate degree days) and degree days

above 29◦C (extreme degree days) for corn. The upper bound is slightly higher for soybeans,

resulting in degree days 10-30◦C and degree days above 30◦C. We use the same degree day

variables for winter wheat as for soybeans. We experimented with using separate temperature

measures by trimester (Tack, Barkley, and Nalley 2015), but did not find an improved fit.

In each regression, we also include a quadratic of season-total precipitation. Precipitation

and degree days are summed across the six-month growing season from April to September

and spatially averaged using the same PRISM grid weights as for the CO2 data that are

aggregates of USDA’s Cropland Data Layer for each county.

Air pollution data come from the EPA’s national network of pollution monitors. We use

hourly data from the EPA’s Pre-Generated Data Files8 for five major pollutants: Ozone

O3 (44201), sulphur dioxide SO2 (42401), carbon monoxide CO (42101), nitrogen dioxide

NO2 (42602), and particulate matter PM10 Mass (81102). We use the spatial interpolation

approach of Boone, Schlenker, and Siikamäki (2019) to get the pollution variables at the

PRISM grid, and then take the area-weighted average (again using the Cropland Data Layer)

value of all grids in a county across the six-month growing season from April to September.

For the analysis of long-term trends in vegetation density, we use NOAA’s Advanced Very

High Resolution Radiometer (AVHRR) satellite measure of Normalized Difference Vegetation

Index (NDVI) at 0.05° resolution, or 5.6km at the equator (Vermote et al. 2014) . Accessed

7Note that in the construction of the 4th-order Chebyshev polynomial we include all non-flagged readings
over the US, not just those over cropland.

8Available https://aqs.epa.gov/aqsweb/airdata/download_files.html
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through Google Earth Engine, the advantage of AVHRR relative to MODIS and other recent

remotely-sensed products is its three decade timespan encompassing growing seasons from

1982 to 2013.

Finally, county-level crop yields for corn, soybeans, and winter wheat were obtained from

USDA’s National Agricultural Statistics Service.

We note that there are other potential CO2 data sources: OCO-2’s GEOS Level 3 daily

product, which gap-fills observations in time and space using short transport simulations from

the GEOS atmospheric model (Weir and Ott 2022), and which is utilized for the monthly

visualization of CO2 anomalies in A3. Another is NOAA’s CarbonTracker, which is based on

air sample measurements across 460 global sites and an inverse model of atmospheric CO2

that adjusts surface-level CO2 uptake and releases to align with observational constraints

(Jacobson et al. 2020). The OCO-2 Level 2 product is our preferred measure of CO2 because

it is directly measured from space, and thus avoids the endogeneity risks around the modelling

assumptions behind OCO-2 Level 3 and CarbonTracker in regards to weather and vegetation

dynamics or ground-level confounders like local pollution and economic activity. Further,

reanalysis products may suffer from promulgation of interpolation errors (Parker 2016).

Nevertheless, CarbonTracker has its own advantages including its longer timespan (2000-

2018), greater spatial resolution, and the fact that it models CO2 near ground level, as

opposed to OCO-2 which measures the entire air column from the ground up to the satellite.

For the sake of robustness, we replicate our main analyses in Appendix B using Carbon-

Tracker rather than OCO-2. We use the CarbonTracker product release CT2019B (Jacobson

et al. 2020) and the level 1 estimates which correspond to 25m above the Earth’s surface. To

construct CO2 anomalies, we perform a procedure analogous to the one used with the OCO-2

satellite: we take the distance-weighted average of the surrounding four CarbonTracker grids

for each PRISM grid to derive PRISM-grid level CO2 exposure, which is then aggregated to

the county level using cropland weights from the Cropland Data Layer. Figure B2 displays

the cross-plot of CO2 anomalies from the OCO-2 satellite and CarbonTracker during the

four years (2015-2018) in which the datasets overlap. Most importantly, they have a similar

standard deviation, which mitigates the concern that our estimates are upward biased be-

cause the variation in observed CO2 over the entire column (across different heights) in our

preferred satellite data could be less than what crops experience on the ground. This is not

the case.

We provide one additional test for the relationship between the OCO-2 satellite readings

and in situ measurements of CO2 in light of concerns from the air pollution literature about
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the reliability of remotely-sensed measurements capturing ground-level conditions (Fowlie,

Rubin, and Walker 2019). Figure A5 shows the relationship between daily CO2 readings

from OCO-2 and low altitude aircraft flights compiled by NOAA’s GLOBALVIEW plus v8

ObsPack (Cox et al. 2022). We find an r-squared is 0.84, implying a strong relationship

using this non-transformed data at a granular temporal and spatial level, again suggesting

that the satellite measures are a reliable source for ground-level conditions.

3 Model and empirical strategy

We estimate the CO2 fertilization effect by linking OCO-2 satellite data on CO2 levels with

county-level yield data in the US. There are several identification challenges to address.

While gaseous CO2 ultimately diffuses across space and becomes uniformly distributed in

the atmosphere,9 this process occurs over the course of weeks to months and is affected by

specific emission events, local CO2 sources and sinks, as well as wind and weather dynamics

(Hakkarainen, Ialongo, and Tamminen 2016, Massen and Beck 2011). Spatial variation in

CO2 exposure at any given time is driven by such disturbances. Figure A3 visualizes this

variation across the US during each month of the growing season in an example year, 2019.

Taking Nebraska as an example, we see that in April CO2 exposure is low compared to

the US average, high in May, lower in June, neutral in July, high in August, then lower in

September.

Our empirical approach links the resulting local variation in CO2 (i.e., anomalies) to

fluctuations in yields. To do this, we match the yield data with local CO2 readings and

weather outcomes over the area where corn, soybeans, and winter wheat are grown within

each county, respectively. All models use seasonality-adjusted CO2 anomalies in ppm, as

described in the Data section, and log of county-level yields as the outcome variable unless

otherwise noted. We focus on the US, a top global agricultural producer. Our primary

analysis encompasses counties east of the 100° meridian for corn and soybeans, the same set

of counties as used in Schlenker and Roberts (2009). Because winter wheat is grown further

west, we use all states east of the Rocky Mountains as the baseline for wheat. These areas

account for the vast majority of US row crop production. As a sensitivity check, we also

perform the analyses on the entire continental US and other sub-samples, as visualized in

Figure A2.

9The spatial diffusion of CO2 is what makes climate change a global public goods problem. It also allows
scientists to rely on singular sources of long-term CO2 measurements, like the Mauna Loa Observatory, to
estimate global CO2 levels, which are then incorporated into global process-based models.
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Panel model

The set up of our panel model is similar to what is commonly used in the literature to

estimate climate change damages. We regress log yields on CO2 after controlling for the

four weather variables that were found to best predict corn and soybean yields (Schlenker

and Roberts 2009) and criteria air pollutants (CO, NO2, O3, PM10, SO2). The panel model

includes county fixed effects to account for differences in average yields across counties driven

by factors such as soil quality and average climate, as well as county-specific time trends

to account for local trends in both CO2 and yields to rule out a spurious correlation of

trending variables. Figure A4 illustrates the variation used in the panel model, highlighting

the correlation in Macoupin county, Illinois, which is downwind from an urban area (St.

Louis).

The panel model specification is:

yit = αi0 + αi1t+ β cit + γWit + δPit + εit (1)

where yit is log crop yield in county i in year t; αi0 is a county fixed effect; αi1 is a county-

specific time trend; β measures the observed CO2 fertilization effect from the seasonally-

adjusted CO2 reading (cit) in the county i in year t; γ accounts for a vector for weather vari-

ables Wit (two temperature degree day variables, precipitation and precipitation-squared,

all summed over the six-month growing season), while δ is a control for five criteria air

pollutants Pit (CO, NO2, O3, PM10, SO2). We use the daily mean for CO, NO2, PM10,

and SO2, and O3 averaged over the growing season, which we fix to April-September for all

crops. Finally, εit are the errors, which are clustered at the state level to account for spatial

correlation and state-level policy. The panel specification has been used to link random

year-to-year weather fluctuations to annual yield outcomes (Schlenker and Roberts 2009).

The effects are clearly visible in Figure 1 where we see a significant reduction in national

corn yields in 2012 when the Corn Belt experienced drought and extreme heat events.

Our baseline specification links log yields to a measure of CO2 imposing a CO2 fertilization

effect that is constant in relative terms. In Figure 5 we also estimate log-log (constant

elasticity), lin-lin, and lin-log models. The results are very close for our sample period 2015-

2021, where CO2 values vary within a narrow 20 ppm range (Figure A4). All give a similar

linearized approximation. The results, however, would give very different projections for

future CO2 increases when extrapolated out-of-sample as the functional form assumptions

become more crucial. Given the limited variation in CO2 in our seven-year sample across

space and time, we unfortunately cannot identify nonlinearities.
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Identification remains challenged by several factors: 1) the possibility that local drivers of

CO2 could also affect yields, 2) possible reverse causality where yield anomalies impact CO2

levels, although this should downward bias our estimates as higher yields imply less CO2,

and 3) the spatial correlation in ambient CO2 concentration and possible spatially-correlated

confounders that may include agricultural practices, fossil fuel production, urbanization, and

large-scale weather systems. While we control for confounders when possible, we exploit

differing sources of variation to identify the CO2 fertilization effect: first, an instrumental

variables approach using upwind counties to ensure that local CO2 levels are not driven by

local conditions, and second, a spatial first differences approach to isolate differences between

neighboring counties to reduce the effect of any regional confounders that get differenced out.

Wind instrument

Wind direction is often employed in health economics to obtain exogenous variation in

pollution exposure (Schlenker and Walker 2016, Deryugina, Heutel, Miller, Molitor, and

Reif 2019). In the context of our study, mean CO2 concentrations and peak fluxes have

been shown to correspond with the wind direction of localized CO2 emission sources (Coutts,

Beringer, and Tapper 2007, Massen and Beck 2011, Garćıa, Sánchez, and Pérez 2012, Xueref-

Remy et al. 2018). And while there are non-wind drivers of CO2 anomalies, like power plants

and vegetation, these features vary far less over time and space than relatively random atmo-

spheric phenomena that drive wind patterns. Such within-year variation can be visualized

in Figure A3.

One limitation of this instrument is that wind-driven CO2 exposure could also be corre-

lated with other co-occurring pollutants. We try to address this by explicitly controlling for

the five criteria air pollutants. In any case, given the negative affect of pollutants like ozone

on crop yield (Boone et al. 2019), this would likely bias our estimates downward.

Figure 2 shows our approach to deriving a wind instrument that follows Braun and

Schlenker (2022). We first calculate the centroid of each county as the cropland-weighted

average of all grids in a county, weighting by the combined corn, soybeans and winter wheat

acreage from the Cropland Data Layer. We then pair each county’s centroid with the cen-

troids of all its neighbors, which are not cropland-area weighted given that we are using all

CO2 readings as an instrument, not just those over agricultural areas.

We next determine the upwind county based on the direction in which neighboring cen-

troids are located, which is time invariant, and the county’s hourly wind direction over the

growing season constructed from hourly North American Land Data Assimilation System

(NLDAS) data, again using the cropland-area weighted average of all NLDAS grid cells in
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a county. We derive the cosine between the direction of neighboring counties and the wind

direction and choose the county whose cosine is closest to -1 as the “upwind” that hour.

For each neighboring county, we then sum the number of hours it is “upwind” from our

target county over the 4392 hours comprising the April to September growing season in a

given year. The neighboring county that is the most hours upwind is thus categorized as

the “Upwind” county, which can change year-to-year. We then instrument each county’s

CO2 anomaly on that of its most upwind neighbor in that given year. We purposefully pick

the CO2 anomaly in the upwind county that is over the entire county area, not just the

agricultural area, as we are interested in all upwind sources.

The strength of the upwind relationship is an important consideration. Figure 3 displays

the number of hours that the “Upwind” county is actually upwind in a given year for each

crop. A low number of hours implies a weak relationship in which the wind is variable

over the growing season, i.e., a value of 1000 hours means that the county most frequently

upwind is in fact only upwind 23% of the time (1000 divided by the 4392 hours in the growing

season). In our IV regression, we vary the minimum hour cutoff and see that the CO2 effect

persists. Summary statistics related to the IV set up are included in Table 1.

The wind instrument is modelled as:

yit = αi0 + αi1t+ β cit + γWit + δPit + εit (2)

cit = ai0 + ai1t+ bci[upwind]t + ηWit + θPit + eit (3)

where items are defined as in equation (1) for the panel model, except that β measures

the observed CO2 fertilization effect from the instrumented CO2 value (cit), and ci[upwind]t is

the instrument using the CO2 value from the county that is most frequently upwind based

on the hourly wind data.

Spatial first differences

We use a spatial first difference (SFD) model that is a generalization of Druckenmiller and

Hsiang (2019) in order to leverage another source of variation. It compares the change in the

CO2 and yield anomalies across all county neighbor pairs after removing county fixed effects

and county-specific annual time trends, while again controlling for spatial differences in the

other control variables (weather and air pollutants). To do this, we first derive anomalies by

factoring out county fixed effects and county-specific time trends for all variables:

vit = αi0 + αi1t+ εit (4)
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where vit ∈ {yit, cit,Wit,Pit} in order to obtain the anomalies ε
(v)
it for each variable. By

the Frisch-Waugh-Lovell theorem, regressing ε
(y)
it on ε

(c)
it while controlling for ε

(W)
it and ε

(P)
it

would give the same estimate for β as in equation (1). Instead, we look at the spatial first

difference by pairing each county i with all of its neighbors j, defined as having a common

coordinate in the county shape file. We take the difference in anomalies in a given year

between neighbors: ∆
(v)
ijt = ε

(v)
it − ε

(v)
jt , so any common shock would be differenced out. In

a second step we then link these differences in annual anomalies (one observation for each

county-pair per year):

∆
(y)
ijt = β∆

(CO2)
ijt + γ∆

(W)
ijt + δ∆

(P)
ijt + εijt (5)

In the appendix we use an alternate SFD approach using a cross-sectional model to

examine persistent average gradients in CO2 and yields in space while again controlling for

weather and co-pollutants. Ignoring annual anomalies (i.e., shocks), for each variable we

derive the average outcome over all years vi = 1
T

∑T
t=1 vit, and again pair county i to all its

neighbors j, defined as having a common coordinate in the county shape file. We take the

difference in average outcomes between neighbors: ∆
(v)
ij = vi − vj and link these differences

in space in a cross-sectional regression (one observation for each county-pair):

∆
(y)
ij = β∆

(CO2)
ij + γ∆

(W)
ij + δ∆

(P)
ij + εij (6)

The SFD methods address concerns about regional variation in confounders that might

be correlated with regional variation in CO2 levels as shown in Figure A3. On the other

hand, given the small remaining variation in CO2 levels between neighboring counties, the

SFD approach might amplify measurement error by differencing out the common shock

in a year and lead to attenuation bias. Panel models and SFD models require different

assumptions, i.e., for panels, that annual CO2 anomalies are uncorrelated with other omitted

explanatory variables, and for the SFD that the average gradient in CO2 is uncorrelated with

omitted variables. The fact that we obtain robust and consistently-positive CO2 fertilization

estimates makes it less likely that results are driven by the particular assumptions of each

individual approach.
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4 Results

The panel model results showing the aggregate effect of CO2 on county-level crop yields in

the US are included in Table 2. The point estimates for CO2 are positive in all cases. Using

the full models in columns (1c), (2c), and (3c) that control for weather and pollution, we find

that a 1 ppm increase in CO2 equates to yield increases for corn, soybeans, and winter wheat

of 0.4%, 0.6%, 1%, respectively. The fertilization effect is less for corn (C4 crop) and greater

for soybeans and winter wheat (C3 crops), as observed in controlled experiments. Weather

controls in columns (b) and (c) confirm that moderate degree days are generally yield-

enhancing, while extreme heat (extreme degree days) are highly detrimental. Similarly, the

quadratic for precipitation is hill-shaped suggesting that a moderate amount of precipitation

is generally best). Other pollutants besides CO2 reduce yields (have negative coefficients if

they are significant).

These results do not appear to be driven by outliers: Figure A6 plots the anomalies for

OCO-2 in the preferred panel model after the covariates are factored out with the regression

line and a 90% confidence band. Many factors influence yields beyond CO2, and to that

end we see that much variation remains after accounting for CO2 as well as our controls for

weather and other environmental factors. However, as long as CO2 fluctuations are uncor-

related with the other remaining unaccounted factors, our approach provides an unbiased

estimate of the CO2 fertilization effect. For example, Table 2 starts in columns (a) by not

controlling for either weather or pollution in a county, while columns (b) account for the four

weather variables that have been shown to be good predictors of corn and soybean yields,

yet the CO2 coefficient is relatively stable across specifications. Finally, columns (c) account

for other pollutants that might co-vary with CO2, e.g., because they are co-generated when

fossil fuels are burned, but again we do not find statistically different results. The inclusion

and exclusion of these controls known to influence crop yields do not significantly alter our

findings, so any omitted variable would have to be correlated with both CO2 and yields,

but not the other controls. Interestingly, when controlling for weather in columns (b), the

coefficients for CO2 become slightly larger than in columns (a) for all three crops, which is

consistent with the discussed negative feedback loop in which bad weather reduces yields

and increases CO2 through a reduction in photosynthetic activity.

Table 3 includes the results from the IV model. While our baseline model included all

counties with at least three CO2 and yield observation, the wind IV furthermore requires

that the upwind county has at least three CO2 and yield observations, which further limits

our dataset. The table therefore first replicates the panel results for the same set of counties
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in the top row – columns (b) and (c) – before the IV results are shown in the bottom

row to ensure that any possible differences are driven by the IV setup and not sample

composition. As described in the modeling section, any possible feedback would downward

bias our estimates, i.e., higher yields through increased photosynthesis removes CO2 from

the atmosphere and thereby implies a negative correlation. We would therefore expect the

coefficient to increase when we instrument by upwind CO2 levels, which is indeed the case.

Compared to the OLS panel estimates, the coefficients are larger for corn, soybeans, and

winter wheat by 36%, 65%, 19%, respectively when averaging across columns (b) and (c).

The effect is robust to dropping observations with a less strong upwind relationship (under

1000 hours upwind per growing season). At the same time, limiting our dataset further to

counties with even more consistent wind patterns (where the upwind county is even more

frequently the same county) shifts the sample area towards the drier western part of the US

where there is a strong north-south wind pattern in the Great Plains, and thus becomes less

representative of average conditions in the US.

Table 4 shows the results of the spatial first differences model, which directly isolates

variation between neighboring counties. We see consistently positive coefficients—both for

annual shocks as well as cross-sectional average levels, the latter being shown in Table A1.

The magnitudes are smaller than the panel and IV estimates, especially for winter wheat,

but still the fertilization effect remains largest for winter wheat. The spatial first difference

approach clearly shows that the results are not driven by regional anomalies in a year, which

would difference out and cause the results to vanish. At the same time, we have infrequent

satellite readings over random points in a county in each year, and the spatial first difference

approach will therefore amplify measurement error as it differences out the common signal

for two neighboring counties and hence suffers from attenuation bias. We therefore choose

the panel model as our baseline model.

We perform a number of sensitivity checks that produce largely similar results. First, we

vary the model specification to test for non-linear effects, which are well-documented in the

climate-economy literature (Dell et al. 2014). Our baseline model links log yields to CO2

levels, assuming that a 1 ppm change in CO2 has the same relative (percent) effect on yields.

Figure 5 compares the effect of the main specification (Log-Linear) to other functional form

combinations: Linear-Linear (constant absolute effect), Log-Log (constant elasticity), and

Linear-Log. To make the results comparable, we do not show the coefficients, but instead

show the effect of a 1 ppm increase on corn yields in each case, as well as the 90% confidence

interval. Results are very similar, which is not surprising, as we only have seven years of data
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and they all provide local linear approximations for this limited duration where CO2 varies

by about 20 ppm only, which makes it hard to identify non-linear relationships. It should

be noted, though, that in our thought exercise where we extend the coefficient backward to

1940 to simulate what the CO2 effect was, the functional form makes a very large difference,

which would also be the case if we were to project the effect several decades into the future.

Second, we vary the time trends to allow for the possibility that temporal patterns in

CO2 levels and crop yields may be occurring at a geographic level different than the county

level—e.g., state-level policies may drive energy or agricultural production. Figure 6 plots

the CO2 coefficient for all models (Panel, IV, and SFD) alternately using no time trend, a

common trend, state-level trends, and county-level trends. All point estimates are positive.

The chosen time trend has no effect in the spatial first difference approach as neighboring

counties tend to trend in a similar fashion, and hence exclusively focusing on comparisons

between neighboring counties absorbs a common time trend. While there is some variation

in the panel or IV setup when using a common national time trend or omitting trends

altogether, the granularity of the time trend (state-specific versus county-specific) does not

matter much.

Third, we run our analyses comprising different US geographies as visualized by the

colored regions in Figure A2. Our primary analysis encompasses counties east of the 100°
meridian (excluding Florida) for corn and soybeans, an area accounting for the vast majority

of US corn and soybean production, as well as counties east of the Rocky Mountains for

wheat. Figure 7 includes results for the sample comprising the entire contiguous US, east

of the Rockies, or east of the 100° meridian of primarily-rainfed agricultural counties. The

results are again fairly stable, mitigating concerns that this relationship is driven by regional

dynamics like irrigation. Note that the color coding of subsets in this Figure matches the

map in Figure A2.

Finally, one concern about the OCO-2 satellite data we use in our analysis is that it

measures CO2 across the entire atmospheric column, i.e., the area between the satellite

and the ground. What matters for plants is CO2 at ground level, not higher altitudes.

While CO2 concentrations across the air column are related through diffusion processes, if

CO2 disturbances at ground level phase out in altitude, then the variation we observe in

the satellite data would be smaller than the ground-level variation, thereby leading to an

upward-biased CO2 fertilization coefficient. However, as discussed in the Data section, our

satellite measures align well with in situ measures from low flying airplanes in Figure A5.

Nevertheless, we replicate our entire analysis using a modelled CO2 product from NOAA’s
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CarbonTracker in Appendix Section B. CarbonTracker provides CO2 levels at various alti-

tudes and we choose the one closest to the ground. This data is for 2000-2018, and hence

has four overlapping years (2015-2018) with our satellite data (2015-2021). The cross-plot

of CO2 anomalies in Figure B2 shows that the variation in OCO-2 and CarbonTracker are

comparable. Moreover, we consistently find significant CO2 fertilization effects in the Car-

bonTracker data, that in case of corn are even larger than our baseline estimates, alleviating

concerns that our coefficients are artificially inflated. Since interpolated re-analysis data

products like CarbonTracker can be a ‘black box’ to users, we prefer the raw OCO-2 satellite

measurements—especially in relation to our instrumental variable approach where spatially-

interpolated data may mechanically produce a significant first stage.

5 Discussion

Global ambient CO2 levels have increased by 2 to 2.5 ppm per year on average since 2000.

Our panel models estimate a yield responses between 0.4% to 1% per 1 ppm CO2. These

estimates, which are at the very top of the range found in the literature, imply that CO2

fertilization was a major contributor to recent crop productivity in the US. Put another way,

yields may have increased 1% to 2.5% per year due to CO2 in recent years, fully accounting

for observed yield increases.

Looking further back in time, Figure 1 shows that since 1940 corn yields have increased

by 500% and soybeans and winter wheat yields by 200%, while ambient CO2 levels have

increased by about 100 ppm. We can conduct a back-of-the-envelope counterfactual in

which we hold CO2 constant at 1940 levels and assume the CO2 fertilization effect that we

estimated using 2015-2021 data can be applied throughout 1940-2021. Admittedly, this is

a strong assumption, as previous studies mentioned in Section 1 have shown that the CO2

fertilization effect might diminish under stressors, e.g., nutrient or water deficiencies. If

crops suffered from those other limiting factors, the CO2 fertilization effect might have been

weaker. And the climate in recent decades would not be the same if CO2 had remained at

1940 levels. Nevertheless, we find it useful to run this thought experiment to highlight the

possible magnitude of the CO2 fertilization effect. Figure 4 shows the results of this thought

experiment, implying that CO2 fertilization may be responsible for the vast majority of past

productivity growth, and that in the absence of CO2 fertilization, yields may have otherwise

started to plateau or even decline in recent decades.

How could this have occurred? One place to draw insights is the period before 1940, when
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crop yields were largely stagnant during a backdrop of rapid industrialization and economic

growth. Olmstead and Rhode (2002) argue that from 1800 to 1940, “wheat production

witnessed wholesale changes in varieties and cultural practices...without these changes, vast

expanses of the wheat belt could not have sustained commercial production and yields ev-

erywhere would have plummeted due to the increasing severity of insects, diseases, and

weeds.” What if this same dynamic persisted after 1940 in which agricultural innovation

served largely to protect crops against loss rather than increase yields? One third of all crop

seed patents are related to crop pests or pathogens (Moscona and Sastry 2022), and many

agricultural technologies are focused on crop resilience to extreme weather (e.g., flood and

drought tolerance). In addition, only a small share of yield gains since 2005 can be attributed

to genetic improvements (Rizzo, Monzon, Tenorio, Howard, Cassman, and Grassini 2022).

Taken together, if CO2 had stayed static, yields could have conceivably stayed flat or only

grown modestly over time—especially given that extreme weather and pest pressures have

increased with globalization and climate change (Bebber, Holmes, and Gurr 2014, Deutsch,

Tewksbury, Tigchelaar, Battisti, Merrill, Huey, and Naylor 2018).

Notwithstanding these explanatory factors, how do these results square with existing

CO2 fertilization estimates? Most FACE experiments raise CO2 levels by 190 to 200 ppm

over a 350 ppm baseline, on average, to which yield responses averaged 18-19% (Kimball

2016, Ainsworth and Long 2021), or 0.1% per ppm. Our estimates of 0.4 to 1% per ppm

are thus 4 to 10 times larger. However, the average effect conceals significant variation

across crops, location, and growing conditions. A FACE study of dryland wheat in Australia

showed that a 180 ppm increase in CO2 was associated with yield increases of 24% and 53%

in two sites, with some yield responses reaching 79% (Fitzgerald et al. 2016). The latter

estimate, equivalent to 0.44% per ppm, is closer to what we find. Similarly, under varying

environmental conditions yield responses above 35% have been observed for corn, rice, cotton,

as well as various leguminous and root crops (Kimball 2016, Ainsworth and Long 2021).

Given the range in FACE results and the complexities of environmental interactions, it is

difficult to benchmark our results.

It is also likely that FACE experiments underestimate CO2 responses due to measurement

error related to the difficulty of maintaining an elevated gas concentration in an open space.

FACE experiments regulate CO2 through a series of pipes in the field that inject the gas at

high velocity based on sensor feedback. CO2 concentrations in FACE experiments fluctuate

widely due to air turbulence, varying 10 times more than what plants experience under

natural conditions (Kimball 2016, Allen et al. 2020). When elevated CO2 is supplied in cycles
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or pulses, crop responses are lower than if the CO2 is supplied more steadily (Bunce 2012).10

Just as CO2 levels can be better controlled in chamber studies than FACE experiments, our

study’s smaller absolute variation in ambient CO2 would imply less fluctuation as well. A

recent review of FACE experiments by USDA researchers found that they underestimate

yield responses by a factor of 1.5 (Allen et al. 2020) due to CO2 fluctuations. With this

adjustment, our estimates become even more reasonable.

It is also worth noting that there are only two long-standing FACE experiments in the US

that focus on agriculture: Arizona FACE in Maricopa, AZ, and SOYFACE at the University

of Illinois in Champaign, IL (Ainsworth and Long 2021). Other FACE experiments study

non-cropland ecosystems like forests, grasslands, and tundra, as well as crops in other coun-

tries. Only SOYFACE in Illinois has the potential to approximate agricultural conditions in

the Midwest, where most crop production occurs in the US—though SOYFACE’s primary

focus on soybeans limits what can be said about other crops. Moreover, SOYFACE consists

of 16 octagonal experimental sites that are each 20m wide (283m2), covering about 4,500m2

in total, or slightly more than one acre. For comparison, the average farm in the US is 445

acres (USDA ERS), which raises questions about how generalizable the results are for the

Midwest—especially considering the large variation in crop yields across counties and even

within fields (Lobell and Azzari 2017).

Therefore, it is possible that FACE experiments do not reflect the growing conditions

and farming practices of the major growing regions. Given the well-documented interactions

between CO2 and environmental conditions11, CO2 fertilization effects could vary between

FACE experiments and commercial agricultural operations in response to differing fertiliza-

tion and input regimes, soil and water management practices, and local air pollution and

climate anomalies across regions—as well as conditions that vary over time. Our experimen-

tal design utilizing OCO-2 satellite measures of ambient CO2 allows us to account for this

variation at a larger scale and across multiple years of observations.

Nevertheless, we offer another potential explanation for why our CO2 fertilization esti-

mates are higher than what’s generally found in the literature. First, our study looks only at

small increases in CO2, and it may be inappropriate to extrapolate out fertilization effects

10Short-term fluctuations in CO2 can affect photosynthetic activity in part because leaves have little
storage capacity for gaseous CO2 and the half-life of CO2 in the gas space is short, e.g., 0.20 seconds for
wheat (Hendrey, Long, McKee, and Baker 1997).

11Including nutrient availability (Kimball et al. 2001, Hungate et al. 2003, Reich et al. 2006, Ziska and
Bunce 2007), water availability (Ottman et al. 2001, Leakey et al. 2006, Keenan et al. 2013, Morgan et al.
2011, Zheng et al. 2020, Gray et al. 2016), and combined nutrient-water-CO2 interactions (Markelz, Strellner,
and Leakey 2011)
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which may diminish at higher CO2 levels. As noted, most studies (including FACE, open

top chamber, and greenhouse experiments) involve a large increase in CO2 levels by 200 ppm

or more over ambient levels. In contrast, our paper relies on variation in the range of 20

ppm during the OCO-2 timeline from 2015 to 2021. Such marginal increases could produce

relatively higher fertilization effects given the diminishing photosynthetic response curve of

plants to elevated CO2. The rate of CO2 assimilation in C4 plants, for example, is nearing

saturation at current global CO2 concentrations (Lambers and Oliveira 2019). Our results

may reflect higher yield responses around current ambient CO2 levels that occur at a steeper

part of the photosynthetic response curve. This same dynamic could explain part of the

observed decline in the global carbon fertilization effect (Wang et al. 2020).

But more generally, a strong positive relationship between CO2 and yields should not be

inherently surprising. CO2 is a purchased input in many agricultural settings. As mentioned

earlier, the gas has long been pumped into greenhouses to spur photosynthesis and increase

the yield of horticultural crops. Optimal CO2 concentrations of 900 ppm have been suggested,

which is over twice current ambient levels (Mortensen 1987).

An alternative way of contextualizing our results involves looking at trends in non-

cropland vegetation near to the US breadbasket where our analysis is focused. As mentioned

earlier, studies have documented a global greening trend associated with CO2 fertilization

(Zhu et al. 2016). In a similar vein, Figure C1 analyzes trends in NDVI, a measure of

vegetative density, over 32 years from 1982 to 2013 using AVHRR satellite data. We find

that NVDI increases 0.48% per year across the entire US, on average. Focusing just on

forested land, which is still subject to CO2 fertilization but far less actively managed than

cropland, NVDI growth is 0.64% per year,12 which is very much in line with our estimates

of 0.4-1% per year for crop yields. We can look to isolated and/or protected forests like the

Adirondacks or the Ozarks to further limit ourselves to locations untouched by agricultural

innovation.13 The bottom panel shows that several of these locations experienced an even

higher greening trend, closer to 1% per year. While vegetation indices like NDVI are not

directly comparable to crop yields, this analysis implies that CO2 fertilization likely played

a material role in greening the forestland that is proximate to US croplands—in such a way

that cannot be attributed technology-driven productivity drivers—by an order of magnitude

similar to what we find in managed croplands.

12The higher forestland average aligns with FACE experiments which find that trees are more responsive
than herbaceous species like row crops to elevated CO2 (Ainsworth and Long 2005).

13The selected forests span a range of biomes and age classes to address concerns that forest growth and
succession dynamics are driving these trends.
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6 Conclusion

We find a significant and robust CO2 fertilization effect by linking OCO-2 satellite-measured

CO2 fluctuations to yield fluctuations of corn, soybeans, and winter wheat from 2015 to 2021.

Our study spans more than half of the commercially-farmed area of these crops in the US

and offers a test of whether the fertilization effects found in controlled experiments can be

verified under real-world growing conditions. While panel models linking weather and yield

anomalies have shown the possible detrimental effect of extreme heat on yield, the same setup

can be used to show that localized CO2 anomalies drive significant yield changes—outcomes

also reflected when utilizing alternate empirical approaches including a wind instrument and

spatial first differences across neighboring counties. Our results suggest that a significant

proportion of observed yield gains for corn, soybeans, and winter wheat since 1940 may be

attributable to increases in CO2, an important driver of agricultural productivity growth.

Our paper shows how satellite-based measures of CO2 can be useful in complementing

FACE field experiments, especially in the context of ensuring the external validity of esti-

mates of the effect of CO2 on agriculture and ecosystem functioning at a large scale. The

approach can be extended to study real-world crop responses globally. Our results also merit

consideration in the context of climate models used to estimate climate change impacts and

the social cost of carbon, but we caution against extrapolating the fertilization effect far

into the future, which requires further assumptions about the functional form and the extent

there are decreasing returns to further CO2 increases, as well as uncertainty about future

environmental interactions.

Relatedly, our analysis is focused on the US, and it is possible that fertilization effects

will differ greatly across countries based on the prevailing crops and environmental condi-

tions (McGrath and Lobell 2013), especially given that climate change alters the coupling of

temperature, soil moisture and precipitation which determine crop yields (Proctor, Rigden,

Chan, and Huybers 2022). Under future climate change, such heterogeneity could exacer-

bate spatial inequalities (Cruz Álvarez and Rossi-Hansberg 2021) and alter the comparative

advantage of different regions (Costinot et al. 2016, Nath 2020) with large potential welfare

effects that are worth investigating. While recent research has shown that mechanization

significantly increased productivity and welfare (Caunedo and Kala 2022), as do property

rights (Wüpper, Schlenker, Jain, Wang, and Finger 2022), we argue that environmental

factors like CO2 also play a crucial role.

We reiterate that climate change will likely have a negative impact on agriculture in aggre-

gate, especially in regions exposed to extreme heat, and that CO2-driven yield increases may
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be offset by effects on food nutrition and quality (Loladze 2002, Taub and Allen 2008, Myers

et al. 2014). Nevertheless, this paper demonstrates that marginal increases in CO2 can also

have a strong countervailing fertilization effect—and that such effects may account for a

material proportion of historical productivity improvements in US agriculture with impli-

cations for climate modelling and the literature on agricultural productivity and structural

transformation.
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Ozone and Corn Yields in the United States.” CEEP Working Paper 7.

Braun, Thomas, and Wolfram Schlenker. 2022. “Cooling Externality of Large-Scale

Irrigation.” Working Paper.

Bunce, J.A. 2012. “Responses of cotton and wheat photosynthesis and growth to cyclic

variation in carbon dioxide concentration.” Photosynthetica 50 (3): 395–400.

25



Caunedo, Julieta, and Namrata Kala. 2022. “Mechanizing Agriculture.” Working Pa-

per.

Costinot, Arnaud, Dave Donaldson, and Cory Smith. 2016. “Evolving comparative

advantage and the impact of climate change in agricultural markets: Evidence from

1.7 million fields around the world.” Journal of Political Economy 124 (1): 205–248.

Coutts, Andrew M, Jason Beringer, and Nigel J Tapper. 2007. “Characteristics

influencing the variability of urban CO2 fluxes in Melbourne, Australia.” Atmospheric

Environment 41 (1): 51–62.

Cox, Adam, Alcide Giorgio Di Sarra, Alex Vermeulen et al. 2022. “Multi-laboratory

compilation of atmospheric carbon dioxide data for the period 1957-2021: Data prod-

uct obspack co2 1 GLOBALVIEWplus v8.0 2022-08-27.” https://doi.org/10.25925/

20220808.

Crisp, David. 2015. “Measuring atmospheric carbon dioxide from space with the Orbit-

ing Carbon Observatory-2 (OCO-2).” In Earth Observing Systems XX, Volume 9607.

960702. https://doi.org/10.1117/12.2187291.
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Figure 1: Annual Yields and CO2
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Figure 3: Histogram of Hours a County is Upwind
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Notes: Figure displays histograms of the number of hours the county used in the IV is upwind (out of the

possible 4392 hours in April-September of a year). Data are shown for counties east of the 100° meridian

for corn and soybeans (shown in green in Figure A2), and east of the Rocky Mountains for winter wheat

(shown in green and blue in Figure A2).
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Figure 5: Sensitivity to Functional Form

Corn Soybeans Wheat
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Notes: Figure presents sensitivity check to what functional form is chosen. Graphs shows the effect of a one

ppm increase in CO2 on aggregate yields in percent as well as the 90% confidence bands. Black lines show

the baseline results from columns (c) in Table 2 for the panel regression, Table 3 for the wind IV, and Table 4

for the spatial first difference that regress log yields on CO2 levels (Log-Lin model). Blue lines regress yields

on CO2 (Lin-Lin model), red lines regress log yields on log CO2 (Log-Log model), while green lines regress

yields on log CO2 (Lin-Log model). All regressions include county fixed effects as well as county-specific

time trends and control for four weather and five criteria air pollution variables. Errors are clustered at the

state level.
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Figure 6: Sensitivity to Included Time Trend
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Notes: Figure presents sensitivity check to what time controls are included. Graphs shows the effect of a

one ppm increase in CO2 on aggregate yields in percent as well as the 90% confidence bands. Black lines

show the baseline results from columns (c) in Table 2 for the panel regression, Table 3 for the wind IV, and

Table 4 for the spatial first difference that all included county-specific time trends. Blue lines instead include

state-specific time trends, red lines include a common time-trend, and green lines include no time trend at

all. All regressions include county fixed effects and control for four weather and five criteria air pollution

variables. Errors are clustered at the state level.
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Figure 7: Sensitivity to Geographic Subset
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Subset: East of 100 East of Rockies Contiguous US

Notes: Figure presents sensitivity check to what what geographic subset is included in the analysis. Graphs

shows the effect of a one ppm increase in CO2 on aggregate yields in percent as well as the 90% confidence

bands. Green lines show the results when counties east of the 100 meridian are used in the analysis, while

blue lines show the results when counties east of the Rocky Mountains are used, and red lines show the

results when all counties of the contiguous US are used. The subsets are shown in Figure A2 and exclude

Florida. All regressions include county fixed effects as well as county-specific time trends and control for

four weather and five criteria air pollution variables. Errors are clustered at the state level.
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Table 1: Summary Statistics of IV Setup

Corn Soybeans Winter wheat
Panel A: All counties

Hours Upwind
Mean 1482 1461 1604
Range [722,3511] [722,2970] [722,3511]
Standard deviation (1482) (1461) (1604)

County Upwind
Always the same 738 694 397
One of two counties 202 209 78
One of three or more counties 21 17 6

Panel B: At least 1000 hours
Hours Upwind

Mean 1527 1503 1658
Range [1000,3511] [1000,2970] [1001,3511]
Standard deviation (1527) (1503) (1658)

County Upwind
Always the same 721 683 379
One of two counties 169 172 67
One of three or more counties 6 5 1

Notes: Tables provides summary statistics for the IV setup that is outlined in Figure 2. The first three rows

of each panel give the number of hours a county is upwind in the IV setup (The corresponding histogram

is given in Figure 3). The last three rows in each panel display how much variation there is year-to-year in

which county is upwind. For the majority of counties, the upwind county is the same in every year. Panel A

includes all counties using the most frequent upwind neighbor irrespective of how many hours it is upwind,

while panel B forces the upwind county to be at least 1000 hours upwind in April-September.
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A Additional Analysis Using OCO-2 Data

Figure A1: Seasonality in CO2

Ap
ril

 1
st

Ju
ly

 1
st

Se
p 

30
th

-3
-2

-1
0

1
2

3
Se

as
on

al
ity

 in
 C

O
2 

(p
pm

)

1 32 60 91 121 152 182 213 244 274 305 335 365
Day of Year

Notes: Chart displays the seasonality in CO2. To make readings comparable, they are seasonality-adjusted

to July 1st (red dashed line) of that year, i.e., a reading on a particular day is corrected by the difference

between the July 1st value of the above seasonality curve and the value of the seasonality curve on the day

of the measurement. The seasonality curve are estimated using all OCO2 readings without quality flags over

the contiguous US using a 4th-order Chebyschev polynomial in the day of year as well as a linear time trend.

Since years have different numbers of days, we normalize January 1st to -1 and December 31st to 1. The

seasonality regression is constrained so the value at the end of the year (December 31st) equals the value at

the beginning of the year (January 1st). The main growing season for corn and soybeans (April-September)

is added as grey dashed lines.
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Figure A2: Number of Observations per County in 2015-2021

Panel A: Corn

Panel B: Soybeans

Panel C: Winter Wheat

Notes: Figure displays the number of observations per county in the date set, i.e., where yield, weather,

criteria air pollution, as well as CO2 data from OCO-2 are available over our sample period 2015-2021.

We split the analysis into three geographic subsets: east of the 100° meridian excluding Florida (Schlenker

and Roberts 2009) shown in shades of green, inter-mountain states (Montana, Wyoming, Colorado, and

New Mexico) shown in blue, and western states (California, Arizona, Utah, Nevada, Oregon, Idaho, and

Washington) shown in red. Since our specification includes county fixed effects and county-specific time

trends, we require at least 3 observation to be included in the dataset.
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Figure A3: Spatial Variation in CO2 Anomalies within a Growing Season, 2019

Notes: Figure displays CO2 anomalies relative to the mean value on the first day of each month during the

growing season in 2019 using OCO-2’s GEOS Level 3 daily modelled product (Weir and Ott 2022). Our

analysis uses the raw satellite measurements, but we are showing here the spatial extend of the anomalies

in an interpolated product.
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Figure A4: Identifying Variation Used in Analysis - Residuals From Trend
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Notes: Figure displays the variation used in the statistical analysis. We include county-fixed effects and

county-specific time trends. This is equivalent to fitting a time trend (shown as dashed lines) to both

yields and CO2 readings for each county and then looking at the residuals. The above figure shows this

for Macoupin county in Illinois (FIPS code 17117), which has Madison County, IL as most frequent upwind

county (eastern-edge of Saint Louis metropolitan area, where CO2 anomalies should mainly be driven by

non-agricultural factors). Corn anomalies are shown as solid red lines, while CO2 anomalies are shown as

blue lines. When CO2 positively (negatively) deviates from the trend, so do yields. The correlation of the

residuals is 0.57. Figure A6 shows the cross-plot for all observations (counties and years) after additionally

removing the effect of weather and criteria air pollutants.
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Figure A5: Ground Truthing CO2 Measurements at the Daily Level (2014-2020)

Notes: Figure displays the relationship between daily CO2 readings from the OCO-2 Level 2 satellite prod-

uct (x-axis) and in situ low altitude aircraft flights (y-axis) compiled by NOAA’s GLOBALVIEW plus v8

ObsPack (Cox et al. 2022). Readings are averaged by day and grid unit at 0.1 degree over the continental

US from 2014-2020. The r-squared is 0.84. The red points are five binscatter point averages across the range

of OCO-2 values. The dashed line is the 45-degree line.
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B Replication using CarbonTracker Data on CO2

Our main paper relies on direct satellite readings from OCO-2 Level 2 product, which are
available for the years 2015-2021. In this section, we replicate our analyses using modelled
data from NOAA’s CarbonTracker, which provides spatially-resolved estimates of CO2 from
2000 to 2018 derived from measurements of air samples collected at 460 sites around the
world by 55 laboratories. Unconnected to OCO-2, CarbonTracker involves an inverse model
of atmospheric CO2 that adjusts surface-level CO2 uptake and releases to align with obser-
vational constraints. We use use product release CT2019B (Jacobson et al. 2020) and the
level 1 estimates which correspond to 25m above the Earth’s surface.

CarbonTracker has an advantage of explicitly modelling surface-level CO2, while OCO-2
readings are air column-averaged. Figure B2 provides a comparison of CO2 anomalies for
the counties and years (2015-2018) where the two dataset overlap where we find that they
have comparable standard deviations. If the satellite-based product of the entire column had
a lower variance, it would inflate our estimate of the CO2 fertilization effect as ground-level
varies by more than what is measured in the column. However, this is not the case.

OCO-2 are raw measurements from a satellite, while CarbonTracker is a reanalysis prod-
uct that might suffer from promulgation of interpolation errors and whose modelling as-
sumptions may cause endogeneity concerns, especially for our IV regression as the under-
lying spatial interpolation in CarbonTracker is including neighboring counties, invalidating
the concept of using upwind neighbors (which are themselves a smoothed estimates of sur-
rounding stations. For that reason we prefer the raw satellite measurements.

Like with OCO-2, we seasonally adjust CO2 levels from CarbonTracker to account for
annual patterns in which ambient concentrations decrease in the spring and summer when
plants are actively photosynthesizing and increase in the fall and winter when plants are
respiring on net. To identify CO2 anomalies relative to this seasonality pattern, we estimate
the average seasonality over the contiguous US with a 4th-order Chebychev Polynomial over
the year which we normalize to [-1,1] by transforming January 1st to equal -1 and December
31st to equal 1 with leap years having an additional day as well. We restrict the seasonality
so the value on January 1 (time -1) equals the value on December 31 (time 1).

The seasonally-adjusted CO2 values are averaged during the growing season from April to
September. We take the distance-weighted average of the surrounding four CarbonTracker
grids for each PRISM grid to derive the PRISM-grid level CO2 exposure, which is then
aggregated to the county level using cropland weights from the Cropland Data Layer, where
we aggregate the 30m-resolution from USDA’s Cropland Data Layer to the PRISM grid.
This gives county-level CO2 estimates.

x



Figure B1: CarbonTracker: Number of Observations per County in 2000-2018

Panel A: Corn

Panel B: Soybeans

Panel C: Winter Wheat

Notes: Figure displays the number of observations per county in the date set, i.e., where yield, weather,

criteria air pollution, as well as CO2 data from CarbonTracker are available over our sample period 2000-

2018. We split the analysis into three geographic subsets: east of the 100° meridian excluding Florida

(Schlenker and Roberts 2009) shown in shades of green, Western United States (California, Arizona, Utah,

Nevada, Oregon, Idaho, and Washington) shown in red, and the remaining in-between counties shown in

blue. Since our specification includes county fixed effects and county-specific time trends, we require at least

3 observation to be included in the dataset. xi



Figure B2: Crossplots of CO2 Anomalies in CarbonTracker and OCO-2 (2015-2018)

Standard deviation of residuals: 1.09 (OCO-2), 1.19 (CarbonTracker)-5
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Notes: Figure displays the cross-plot of CO2 anomalies in CarbonTracker and OCO-2 satellite readings. The

two data sources only overlap for four years (2015-2018). We include county-year observations east of the

100° meridian for corn and soybeans and east of the Rocky Mountains for wheat that have at least three

observations for both CO2 measures so we can fit county fixed effects and county-specific time trends. The

dashed line is the 45-degree line. The standard deviation of the anomalies is given in each panel.
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Figure B4: CarbonTracker: Sensitivity to Functional Form

Corn Soybeans Wheat
Panel IV SFD Panel IV SFD Panel IV SFD
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Notes: Figure presents sensitivity check to what functional form is chosen. Graphs shows the effect of a one

ppm increase in CO2 on aggregate yields in percent as well as the 90% confidence bands. Black lines show

the baseline results from columns (c) in Table B1 for the panel regression, Table B2 for the wind IV, and

Table B3 for the spatial first difference that regress log yields on CO2 levels (Log-Lin model). Blue lines

instead regress yields on CO2 (Lin-Lin model), red lines regress log yields on log CO2 (Log-Log model), while

green lines regress yields on log CO2 (Lin-Log model). All regressions include county fixed effects as well as

county-specific time trends and control for four weather and five criteria air pollution variables. Errors are

clustered at the state level.
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Figure B5: CarbonTracker: Sensitivity to Included Time Trend

Corn Soybeans Wheat
Panel IV SFD Panel IV SFD Panel IV SFD
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Time Trend: County State Common None

Notes: Figure presents sensitivity check to what time controls are included. Graphs shows the effect of a

one ppm increase in CO2 on aggregate yields in percent as well as the 90% confidence bands. Black lines

show the baseline results from columns (c) in Table B1 for the panel regression, Table B2 for the wind IV,

and Table B3 for the spatial first difference that all included county-specific time trends. Blue lines instead

include state-specific time trends, red lines include a common time-trend, and green lines include no trend

at all. All regressions include county fixed effects and control for four weather and five criteria air pollution

variables. Errors are clustered at the state level.
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Figure B6: CarbonTracker: Sensitivity to Geographic Subset

Corn Soybeans Wheat
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Subset: East of 100 East of Rockies Contiguous US

Notes: Figure presents sensitivity check to what what geographic subset is included in the analysis. Graphs

shows the effect of a one ppm increase in CO2 on aggregate yields in percent as well as the 90% confidence

bands. Green lines show the results when counties east of the 100 meridian are used in the analysis, while

blue lines show the results when counties east of the Rocky Mountains are used, and red lines show the results

when counties when all counties of the contiguous US are used. The subsets are shown in Figure B1. All

regressions include county fixed effects and control for four weather and five criteria air pollution variables.

Errors are clustered at the state level.
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C Robustness Check using NDVI data on Plant Growth

Figure C1: Annual Trends in NDVI Vegetation from the AVHRR Satellite, 1982-2013

Notes: Figure displays 30m pixel-level linear trends of log NDVI values by year for the six months of the

growing season from April to September over the 31 years from 1982 to 2013 from the AVHRR satellite

(Vermote et al. 2014). Map visualization and calculations produced using Google Earth Engine.
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