Model ERF_fixed_SST ERF_regres ECS TCR CS_param Clim_fdbk Planck_fdbk H2O_fdbk LR_fdbk Albdedo_fdbk Cloud_fdbk ECS/TCR
(units) 2CO₂ (W m⁻) 2CO₂ (W m⁻) (C) (C) (C (W m⁻)⁻) (W m⁻ C⁻) (W m⁻ C⁻) (W m⁻ C⁻) (W m⁻ C⁻) (W m⁻ C⁻) (W m⁻ C⁻) n.a.
ACCESS1.0 n.a. 3 3.8 2 1.3 0.8 n.a. n.a. n.a. n.a. n.a. 1.90
ACCESS1.3 n.a. n.a. n.a. 1.7 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
BCC-CSM1.1 n.a. 3.2 2.8 1.7 0.9 1.1 n.a. n.a. n.a. n.a. n.a. 1.65
BCC-CSM1.1(m) n.a. 3.6 2.9 2.1 0.8 1.2 n.a. n.a. n.a. n.a. n.a. 1.38
BNU-ESM n.a. 3.9 4.1 2.6 1.1 1 -3.1 1.4 -0.2 0.4 0.1 1.58
CanESM2 3.7 3.8 3.7 2.4 1 1 -3.2 1.7 -0.6 0.3 0.5 1.54
CCSM4 4.4 3.6 2.9 1.8 0.8 1.2 -3.2 1.5 -0.4 0.4 -0.4 1.61
CESM1(BGC) n.a. n.a. n.a. 1.7 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
CESM1(CAM5) n.a. n.a. n.a. 2.3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
CNRM-CM5 n.a. 3.7 3.3 2.1 0.9 1.1 n.a. n.a. n.a. n.a. n.a. 1.57
CSIRO-Mk3.6.0 3.1 2.6 4.1 1.8 1.6 0.6 n.a. n.a. n.a. n.a. n.a. 2.28
FGOALS-g2 n.a. n.a. n.a. 1.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
GFDL-CM3 n.a. 3 4 2 1.3 0.8 n.a. n.a. n.a. n.a. n.a. 2.00
GFDL-ESM2G n.a. 3.1 2.4 1.1 0.8 1.3 n.a. n.a. n.a. n.a. n.a. 2.18
GFDL-ESM2M n.a. 3.4 2.4 1.3 0.7 1.4 n.a. n.a. n.a. n.a. n.a. 1.85
GISS-E2-H n.a. 3.8 2.3 1.7 0.6 1.7 n.a. n.a. n.a. n.a. n.a. 1.35
GISS-E2-R n.a. 3.8 2.1 1.5 0.6 1.8 n.a. n.a. n.a. n.a. n.a. 1.40
HadGEM2-ES 3.5 2.9 4.6 2.5 1.6 0.6 -3.2 1.4 -0.5 0.3 0.4 1.84
INM-CM4 3.1 3 2.1 1.3 0.7 1.4 -3.2 1.7 -0.7 0.3 0 1.62
IPSL-CM5A-LR 3.2 3.1 4.1 2 1.3 0.8 -3.3 1.9 -1 0.2 1.2 2.05
IPSL-CM5A-MR n.a. n.a. n.a. 2 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
IPSL-CM5B-LR n.a. 2.7 2.6 1.5 1 1 n.a. n.a. n.a. n.a. n.a. 1.73
MIROC5 4 4.1 2.7 1.5 0.7 1.5 -3.2 1.7 -0.6 0.3 0.1 1.80
MIROC-ESM n.a. 4.3 4.7 2.2 1.1 0.9 n.a. n.a. n.a. n.a. n.a. 2.14
MPI-ESM-LR 4.3 4.1 3.6 2 0.9 1.1 -3.3 1.8 -0.9 0.3 0.5 1.80
MPI-ESM-MR n.a. n.a. n.a. 2 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
MPI-ESM-P 4.3 4.3 3.5 2 0.8 1.2 n.a. n.a. n.a. n.a. n.a. 1.75
MRI-CGCM3 3.6 3.2 2.6 1.6 0.8 1.2 -3.2 1.6 -0.6 0.3 0.2 1.63
NorESM1-M n.a. 3.1 2.8 1.4 0.9 1.1 -3.2 1.6 -0.5 0.3 0.2 2.00
NorESM1-ME n.a. n.a. n.a. 1.6 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Model_mean 3.7 3.4 3.2 1.8 1 1.1 -3.2 1.6 -0.6 0.3 0.3 1.77
90%_uncertainty 0.8 0.8 1.3 0.6 0.5 0.5 0.1 0.3 0.4 0.1 0.7
Source: http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter09_FINAL.pdf#page=78
AR5 WG1 p.818
Table 9.5 Effective radiative forcing (ERF), climate sensitivity and climate feedbacks estimated for the CMIP5 AOGCMs (see Table 9.1 for model details). ERF, equilibrium climate sensitivity (ECS) and
transient climate response (TCR) are based on Andrews et al. ( 2012) and Forster et al. (2013) and updated from the CMIP5 archive. The ERF entries are calculated according to Hansen et al. (2005) using fixed sea
surface temperatures (SSTs) and Gregory et al. (2004) using regression. ECS is calculated using regressions following Gregory et al. (2004). TCR is calculated from the CMIP5 simulations with 1% CO2 increase per
year (Taylor et al., 2012b), using the 20-year mean centred on the year of CO₂ doubling. The climate sensitivity parameter and its inverse, the climate feedback parameter, are calculated from the regression-based
ERF and the ECS. Strengths of the individual feedbacks are taken from Vial et al. (2013), following Soden et al. (2008) and using radiative kernel methods with two different kernels. The sign convention is such that a
positive entry for an individual feedback marks a positive feedback; the sum of individual feedback strengths must hence be multiplied by 1 to make it comparable to the climate feedback parameter. The entries for
radiative forcing and equilibrium climate sensitivity were obtained by dividing by two the original results, which were obtained for CO₂ quadrupling. ERF and ECS for BNU-ESM are from Vial et al. (2013).