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Radiative transition probabilities were investigated between certain vibrational levels of carbon dioxide.
The number of levels studied was restricted to those that are directly or indirectly involved in the observed
laser action. Vibrational wavefunctions were determined by diagonalizing large Hamiltonian matrices
(up to 30<30). In the Hamiltonian, nonlinear forces were included and the potential energy contained
terms up to fourth order in the normal coordinates. The dipole moment as a function of the normal coordi-
nates was determined by comparing certain observed and calculated absorption coefficients. Reasonable
agreement is obtained between theory and experiment for most transitions where experimental information
is available, The radiative lifetimes of most vibrational levels were calculated to be rather long. Thus,
radiative processes cannot account for relaxation times observed in laser action. Relaxation probably takes
place during collisions with other molecules or light atoms. From gain measurements it is possible to deter-
mine the population difference between laser levels. In Q-switching experiments, half the energy stored in
the upper maser state can be emitted in a short pulse. In thin tubes the energy content of a pulse can be
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107% J/cm?® of gas used.

I. INTRODUCTION

ITH the advent! of the relatively efficient and

powerful N.-CO, laser, it has again become
desirable to assess more fully the radiative processes in
this laser. The problem is qualitatively different from
that found in atomic gases and ions where the transitions
were between two different electronic states. In CO,,
transitions take place between rotational vibrational
states with no change of the electronic level. Previous
work? on vibrational intensities did not include all
transitions of interest, nor were sufficient transitions
investigated to allow a determination of all the param-
eters that are necessary for a numerical evaluation of
transition probabilities and lifetimes.

For a determination of these transition probabilities,
it is necessary to calculate the rotational vibrational
wave functions. We neglect any perturbations of the
vibrational state due to the rotation of the molecule, and
thus the wavefunctions are, in general, products of
rotational and vibrational wavefunctions. For the
vibrational wavefunctions it is essential to include
deviations from harmonic force fields. These perturba-
tions will mix wavefunctions corresponding to different
excitation levels of the various normal vibrations of
CO,. Thus, the usual designation of a level of CO; ac-
cording to its excitation state of various normal vibra-
tions, in general, only represents the dominant contribu-
tion to its wavefunction. Various determinations of the

IC. K. N. Patel, Appl. Phys. Letters 7, 15, 290 (1965); G.
Moeller and J. D. Rigden, Appl. Phys. Letters 7, 274 (1965).

2 D. F. Eggers, Jr., and B. L. Crawford, Jr., J. Chem. Phys. 19,
1554 (1951).

anharmonic force constants have been made in the
literature. We find that one of these® reproduces
reasonably well the observed energy values. In our work
we do not use perturbation theory as has been done
previously, but we diagonalize rather large matrices.
These more accurate calculations show that the force
constants are not as satisfactory as one was led to
believe on the basis of perturbation theory.

The magnitude of the dipole moment as a function
of the various normal coordinates also enters in the
determination of transition probabilities. Expecially in
“forbidden” transitions quadratic and higher-order
terms in the normal coordinates may be important.
From our work it appears that, for the considered
transitions, these higher-order terms do not contribute
significantly. In the presently investigated levels, so-
called forbidden transitions become somewhat allowed,
principally through anharmonic force constants. For a
more precise evaluation of the relative importance of
mechanical anharmonicity vs nonlinear terms in the
electric dipole moment it will be necessary to determine
the anharmonic force constants more accurately than
has been done in the past.

Generally speaking, we shall find that the radiative
lifetimes are rather long. For a complete explanation of
the high power capabilities of the CO; laser, relaxation
by other means than radiation is indicated. It is, of
course, well known that molecules can relax by trans-
ferring vibrational into translational energy in a collision
with another atom or molecule.

3 D. M. Dennison, Rev. Mod. Phys. 12, 175 (1940).
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TRANSMISSION PROBABILITIES IN CARBON DIOXIDE 4279
TasLE 1. Energies for six sets of force constants compared with experimental values.
xperi 1
crE:Eiee; TEZ}aﬁ) Calculated energies (cm™)

State (ecm™) Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
000 0 0 0 0 0 0 0
02°0 1285.5 1298 .4 1299.8 1246.7 1285.1 1269.2 12434
10%0 1388.3 1399.0 1401.7 1386.7 1386.5 1391.3 1371.7
001 2349.3 2343.6 2346.3 2338.2 23482 2337.4 2347.8
010 667.3 672.3 671.3 641.7 664.4 650.7 646.0
03'0 1932.5 1048.4 19479 1854.8 1928.1 1898.0 1842 .4
110 2076.5 2002.7 2093.5 2047.5 2071.9 2063.6 2032.7
02:0 1335.6 1344.6 1342.7 1275.7 13259 1298.5 1279.0

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
Constants {cm™) Ref. 4 Ref. 4 Ref. 2 Ref. 3 Ref. 3, 2 Ref. 3
a —48.8 -37.0 —-35.0 —30.0 —30.0 —30.0
b 729 72.9 713 71.3 713 113
¢ —202.1 —202.1 250.0 —250.0 250.0 —250.0
d 5.3 5.3 1.5 1.5 1.5 1.5
e 2.0 20 —1.6 0.5 0.5 3.7
I 2.4 24 6.4 6.4 6.4 6.4
g —=99 —-99 1.9 1.9 1.9 1.9
I 7.7 Tl 89 8.9 8.9 89
i —12.3 —123 —25.7 —25.7 —25.7 —25.7
w) 1361 1361 1351.2 1351.2 1351.2 1351.2
ws 673 673 672.2 672.2 672.2 672.2
w3 2378 2378 2396.4 2396.4 2396.4 2396.4

i
|
|
Il
|

II. WAVEFUNCTIONS

In determining the vibrational wavefunctions, we
follow Dennison?® closely and assume a Hamiltonian of
the form

H=(2ac/h)[wipd+w2(pd+ps')+wsps*]
+Lhe (w10 wap+wiyt )+ he(ao*+ bop*+coi?)
+he(dat+-ep+ o4+ ga®o®+ ha®TP+ip%).

Equation (2.1) describes four nonlinear coupled har-
monic oscillators where two of them have the same un-
perturbed frequency due to the symmetry of the
molecule. The first parenthesis contains the kinetic
energy, the second the harmonic part of the potential
energy, and the third and fourth describe anharmonic
contributions. The notation is identical to the one used
in earlier work.” In Eq. (2.1) ¢ is the velocity of light,
h is Planck’s constant, w1, ws, and w; are the three fre-
quencies of the unperturbed harmonic oscillators meas-
ured in wavenumbers; p., p¢, 5, and py are the canoni-
cally conjugate momenta to the dimensionless variables
a, & 1, and { to be defined further below. The constants
a,b,c, d, e, f, g h and i describe the anharmonic force
field. Furthermore, p= (#+4%*)!. The four normal
coordinates describing the vibrations of the linear
0-C-0 molecule are as follows: ¢ measures the change
in distance between the two oxygen nuclei and is
positive for an increase in distance, and x, y, and z are
the components of a vector connecting the carbon
nucleus with the center of gravity of the oxygen atoms

(2.1)

* A. Adel and D. M. Dennison, Phys. Rev. 43, 716 (1933); 44, 99
(1933).
® D. M. Dennison, Rev. Mod. Phys. 3, 280 (1931).

where z is chosen to lie parallel to a line joining the
oxygen nuclei. Finally, the above dimensionless vari-
ables are defined in terms of the normal coordinates as

o= 2w {wime/2h)\g,
= 2m (wonc/h) x,
n=2m (wsuc/h)*y,
£=2m (waue/h)tz.
In Eq. (2.2) m is the oxygen mass and u is the reduced
mass 2mM /(2m+M) with M being the carbon atom
mass. Since the force field in the x, v plane is isotropic,
it was found convenient to introduce polar coordinates

£=p cosy and 5=p siny. The unperturbed vibrational
wave functions may then be written

(2.2)

=0/ Qo) (e (e) explyyms(s), (2.3)
with the unperturbed energy E
E=hc[w(m+3)+wi(nat1)+ws(ns+3)].  (24)

In Eq. (2.3) y" (o) and ¢"({) are the conventional
Hermitian functions of the linear harmonic oscillator
while y"2!(p) represents the corresponding two-dimen-
sional analog and is given in Ref. 5. The angle vy is the
polar angle in a plane perpendicular to the axis of the
molecule. The factor of 1/(27)! has been inserted in
Eq. (2.3) because of normalization of ¥. We assume
that ym™i(a), ¢¥™i(p), and ¢¥m=({) are individually
normalized to unity.

We attempt to find an eigenfunction of the Hamil-

"tonian Eq. (2.1) by assuming a linear combination of

functions of the form (2.3). This linear combination is
inserted into a Schridinger equation with the Hamil-
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TasLE I1. Wavefunctions for certain states (constant set 4).

State Wavefunction

000 0.9982 |0000)+-0.0514 10°0)4-0.0206 | 10"2)—(.'!.0184‘I 1200)4- - -

02°0 —0.7726]02°0)4-0.6289 | 10°0)+4-0.0635 | 20°0) —0.0294 14%0) —0.0277 100°0) 4-0.0188 | 12°0)
+0.0188|0092)+-0.0183 ] 202) —0.0156 | 2290) — 0.0147 | 1202) 4-0.0134| 04°0) + - - -

100 —0.7666 | 10°0) —0.6326 | 02°0) —0.0831 | 20°0) +0.0441 | 00°0) — 0.0318 | 00°2) — 0.0236 | 14°0)
—0.0223 | 20°2)-+0.0204 | 2200) —0.0144| 1202)+-0.0133 | 120)+-0.0118 | 040} +- - - -

0001 0.9828|00°1)4-0.1772{10°1)+40.0352 | 10°3)4+-0.0257 [20°1)4-0.0184[02°1)—0.0155 | 12°1)+4- - -

010

0.9992|01'0)—0.0263 | 13'0)+0.0207 [ 1112)4-0.0143 | 1:0)+-0.0106 | 0310) 4 - - -

tonian given by Eq. (2.1). Next, we multiply the result-
ing equation by the complex conjugate of the various
unperturbed functions as given in Eq. (2.3) and inte-
grate over the normal coordinates. In this way we ob-
tain a set of linear and homogeneous equations for the
coefficients of the above-mentioned linear combination.
These linear equations have only a solution when the
determinant of the coefficients vanishes. From the latter
condition the energy of the wavefunctions is determined.
Knowing the energy, the linear equations can be solved,
and thus the wavefunctions determined. In order to
determine the size of the problem, we first note that a
given linear combination contains only one / value. We
note that the highest state of interest in the laser
problem is the 00°1 virbational level at 2349.3 cm™. The
designation 00°1 is to mean that the n1=0, #,=0, I=0,
n;=1 state makes the principal contribution to the
wavefunction. In determining the size of our matrix, we
arbitrarily include all unperturbed levels of a given
! value with energies below 5000 cm™. In addition, we
add all those states above 5000 cm™! that are connected
by “matrix elements” of the perturbation with the levels
of interest, i.e., 00°0, 01'0, 10°0, 02°, 00°1, and some
others. If one of these levels above 5000 cm™ has other
states that are degenerate with it due to the Fermi
resonance «1==2ws, then these additional levels are also
included. For /=0 in this way a 30X 30 determinant is
obtained and it is not practical to reproduce in our
presentation such a large equation.

Several sets of constants that had been previously
used in Eq. (2.1)>* were tried, and the corresponding
energies were calculated. We present these results in
Table I for the above-mentioned states where our cal-
culation should be satisfactory. It is evident that set 4
of Table I is the best one even though the agreement
with experiments is not nearly as good as might have
been expected by examining, for example, Table 56 of
Herzberg.® Since we expect that the present calculation
is superior to the previously used perturbation theory,
we conclude that the various force constants are not
quite correct. The limitations imposed by these some-
what inaccurate force constants become apparent
further below. The authors hope to obtain better con-

§G. Herzberg, Molecular Specira and Molecular Struclure
(D. Van Nostrand Company, Inc., Princeton, N. J., 1945), Vol. 2,

stants in the near future. However, for present purposes
reasonable estimates of the lifetimes and transition
probabilities may be obtained. The wavefunctions for
some states using the constants of set 4 (Table I) are
given in Table II. We are omitting the smaller con-

“tributions to the wavefunctions from the tabulation.

III. TRANSITION PROBABILITIES

The probability that an atom or molecule in the state
m will spontaneously make a transition to the state »
is given by the Einstein 4 coefficient’

A mn= (me"}' 1)_1 (Mw‘/&]ﬂa)smn- (3 ) 1)

In Eq. (3.1) J,, is the angular momentum of the upper
level, 4 is Planck’s constant, X is the wavelength of the
transition, and .S, is the so-called line strength. It is
given by

Sﬂm: Z l(j"‘!M”‘1P]J"!M">|2)

Mp. Mn

(3.2)

where J,, and J, are the angular momenta of the upper
and lower states, and M,, and M, are their z compo-
nents. Furthermore, P is the dipole operator. In Eq.
(3.2) the full vibrational rotational wavefunctions are
to be used. The full wavefunction corresponding to the
one given in Eq. (2.3) is given by*®

¥=[(27+1)4/202m)¥ IDanr? (@,8,7)
Xy (o (oW (). (3.3)

In Eq. (3.3) the Dy’ (a,8,7) are the eigenfunctions of
the symmetric top with total angular momentum J,
an angular momentum of ! along the figure axis and a
z component of angular momentum M ; «, 8, and «y are
the Euler angles. The function Dy’ (e,8,y) is also
known as an element in the matrix describing the trans-
formation of angular momentum eigenfunctions under
rotations. The factor expily in Eq. (2.3) is now con-
tained in the function Dari? (a,8,v). We must, of course,
keep in mind that the vibrational part of the wave-

7E. V. Condon and G. H. Shortley, The Theory of Alomic
Spectra (Cambridge University Press, Cambridge, England, 1957),
p. 177.

8 A. R. Edmonds, Angular Momentum in Quanium Mechanics
(Princeton University Press, Princeton, N, J., 1957), pp. 65-67,
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TRANSMISSION

function in Eq. (3.3) contains not only one term, but
many as given in Table 1I.

We next have to evaluate matrix elements of the
dipole operator P between the wavefunctions. P is
defined with respect to space-fixed axes. It is relatively
easy to calculate matrix elements of the dipole operator
p that is rotating with the molecule. In particular, p is
fixed in the coordinate system that we used to describe
the vibrational wavefunctions of the molecule. There
is one minor conceptional difficulty in visualizing this
coordinate system. The two vibrations described by the
normal coordinates £ and » when superimposed with a
phase difference of 90° can sometimes be looked at also
as a rotation of the molecule around its figure axis. Our
operator p does not participate in this rotation. We thus
obtain when expressing P in terms of p by using the
above-described D matrices (see Ref. 8)

1
P,= ('_ I)ql:Dqll (QNBIO)V_E(?I—F ipﬂ)+Deﬂl (Ct,ﬁ,O)Pz

1
*Dqﬁl‘(aﬁ,O)vE(Prih):l- (3.4)

In Eq. (3.4) the subscript ¢ on P, refers to the fact that
we calculate F (1/v2) (P,%iP,) and P; for g==1 and
0, respectively, instead of P, P,, and P.. In essence,
Eq. (3.4) describes the projection of the vector p on
space-fixed axes. Following Ref. 2, p, and p, may be
expanded into power series of normal coordinates that
transform under symmetry operations of the molecule
in the same way as the angular momenta

Pe=dot+diot+- - -, (3.5a)
py=dm+dpon+---.

Similarly, we obtain
pe=ds{+dygoi+- . (3.5b)

Introducing again the polar coordinates p and v we
obtain

1 1
:FV—?@::HP:;) = q:x—q‘p(dz‘i‘dlzﬂ‘i' o - )expkiy.  (3.5¢)

In Eqgs. (3.3) ds, dis, ds, and dys are constants which
we shall investigate further below. We are now in a
position to rewrite Eq. (3.4) in a way convenient to
calculate the matrix elements.

1
Po=(— 1)“|:Dq11 (a,ﬁ,‘}');%(dzp-i-dmp—#—- )
_’_anl (a:ﬁ:'y) (d3f+d130§'+ Ly )

1
—Dq—u’(a‘ﬁ,Y)E(dep+dlnap+ ' ‘)]- (3.6)

PROBABILITIES

IN CARBON DIOXIDE 4281

TaBLEIIL, §,,,*» as a function of d», d12, d, and dy; (constant set 4).

Transition
U — Vn St (D)2
00°1 — 00% [d3(0.7084) -+-d,5(0.1308)
02°1 — 00°% [d3(0.0364) +-d1s(—0.2944)
1001 — 00°0 [d:(—0.0582) 4-d15(0.3891) J*
0071 — 02°0 [d3(0.0708) +d15(0.3457) J*
00°1 — 10% [ds(—0.1089) 4-d13( —0.4084) |
0002 — 00" [d4(1.0048)+d,5(0.3482) ¢
0110 — 000 3[d:(1.0053)4+d12(0.0334) J*
0310 — 00% 3[d(0.0130) +-d1.(0.4609) ¢
1110 — 0000 3[d2(—0.0135) +-d12( —0.5439)
0200 — 0110 3 d2(—0.8042) +d,2(0.4728) P
10°0 — 0110 4[d>(—0.6105) 4-d1-(—0.5239)
3[do(—1.4248) 41 (0.0277)

0220 — 01'0

In Eq. (3.6) we absorbed the angle v in the D! func-
tions. Note that D' does not contain v explicitly, and
thus Dyt (@,8,0) = D o' (,8,7). Matrix elements are now
easily calculated by integrating over angles and normal
coordinates after multiplying by the volume element
da sinBdBdypdpdedi. The integral over angles may be
obtained from Edmonds® Eq. (4.6.2). Equation (3.2)
further requires taking the absolute magnitude squared
of the matrix element followed by a summation over M,
and M, and the components ¢ of the dipole operator.
The final result may be written in the form of a product,
the first factor resulting from the integration over the
angles e, 8, and v, and the second factor resulting from
an integration over the normal coordinates o, p, and {.
Thus,

SngSJ’MJ“XSvm”", (373-)
where
Ta T N
Synlr= (2T 1) (2T .+ 1)( ) , (3.7b)
__Im g! lﬂ
and
| fo| )
daf'l'dlaﬂg'
? forq'==1
Xvndopdpd{ (3.7¢)
for ¢'=0

The symbol in brackets in Eq. (3.7b) is a 3-7 symbol
tabulated by Rotenberg et al.® In Eq. (3.7b) the
quantity ¢’ is the second index on the D matrix elements
appearing in Eq. (3.6). Since the factor depending on
the normal coordinates is different for ¢’=0and ¢’'= =1,
we must make a distinction between these two cases.
¢’==1means /,,=I,41 and a transition of this type is

% M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten,
Jr., The 3-j and 6-j Symbols (Technology Press, Cambridge,
Mass., 1959).
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TasLE IV. Experimentally determined values of S, as compared to theory for several choices of ds, dys, ds, and ds.

AND KOSTER

Transition Sy (D)2 Sipts (D)? theoretical
T = Un experimental Ref, dy=0.45, di3=0 d3=045, diz=—005 dy=04, diz;=—-0.02
001 — 00% 9510102 11 1.016 <10 0.749 31072 9.553 102
02°1 — 00% 9163 x10+4 11 2.686X10~ 9.678 10~ 4.802 10~
1091 — 00%0 1.290%¢103 11 6.864>10 2.08410°® 11151073
00°1 — 029 1847107 11 1.015 %10 212310 587310
00°1 — 10°0 1.721x103 11 2.401X107# 8171107 1.580 10
0092 — 00" 2.044 107 1.890 1071 1.894 31071
d-_|=[}.20, dm:(] d-.u=0.20, dm=0,05 d2= 0.21, dm=0.03

0140 — 000 2302102 11 2.022X10 2.055 1072 2.250102
0310 — 00%0 1080107 2 3.354 1070 3.286 101 1,369 10—+
1110 — 00%0 307810t 2 3.651 X108 446910 1.835 %10+
02°0 — 0110 1.2941072 94101072 1.197 %10
10 — 0110 8992103 12 7.455%1072 1.100x 102 1.036X10*
024 — 010 4.06010* 4021107 4451102

referred to in molecular spectroscopy as belonging to a
perpendicular band. Similarly, ¢'=0 means l,=1,, and
this transition belongs to a parallel band. Our factor of
1/¥Z appearing in Eq. (3.7c) for ¢'==1 differs from
the convention used by Eggers and Crawford® who
absorb this factor into Sy’ The quantity v, or v,
appearing in Eq. (3.7¢) refers to the wavefunction that
depends only on the normal coordinates g, p, {, exclud-
ing all angles, i.e.,

On= 2k @i (@pF2 I ()R (¢). (3.8)

In Eq. (3.8) the constants aj have been given in Table
I1. In Table III the values of S, *» have been given as a
function of the constants ds, dys, d3, and dy;. The
quantity Sy 7= can be given in closed form by referring
to the algebraic table of the 3-5 symbols of Ref. 9, p. 12.
The constants ds, dis, ds, and dy; may be evaluated by

TapLe V. Finstein A coefficients for some transitions in CO.
assuming d==0.20, d1=0, d3=0.45, and d\;=0.

Transition probability (sec™) (4 coefficient)
with §,,*» experimental with S, v theoretical

Radiation Radiation
Transition Untrapped trapped Untrapped trapped
0001 — 00% R 1.9:<10? 8.9 2.0X10* 8.8
P 20102 10.2 2.1X10° 10.1
00°1 — 02°0 R g 0.34 0.19
P8 036 0.20
00°1 — 10°0 R QE\. 0.23 0.33
¥l 0.24 0.34
0002 — 00°1 R 3.9X102
£ 4.1X10?
0110 — 00°0 R 0.55 0.49 0.48 0.48
i 0.52 0.52 0.46 0.46
0 1.07 0.33 0.94 0.35
0200 — 010 R 0.22
P 0.26
Q 0.48
1000 — 01'0 R 0.24 0.20
P 0.28 0.23
0 0.53 0.44
0220 —- 010 R 1.07
P 0.84
0 1.89

comparison of values of S, ' obtained from certain ex-
periments. The value of S, can be extracted from
measured absorption coefficients integrated over a rota-
tional band.>!® Unfortunately, it is difficult to obtain
accurate data and various authors quote values for the
integrated absorption of a given band that differ by
more than a factor of two. We have used the measure-
ments of Burch et al."* where possible. For the 00°0-11'0
and 00°0-03'0 band we used data of Eggers and Craw-
ford.? Absorption data for the 010 to 10°% transition
were obtained from Kostkowski and Kaplan.!? In Table
IV we have attempted to fit the experimental data by
choosing suitable values for ds, dys, ds, and dy3. Because
of the inaccuracies in the experimental data, one should
not expect too close a fit. The theoretical expressions are
expected to become unreliable for small calculated
values of S, °». This is because in these cases S, *» be-
comes small because of a near cancellation of larger
numbers. Any errors in the wavefunctions due to
inaccurate force constants cause here disproportionately
large errors in S, , " Within the accuracy of the data d,.
may be assumed to be zero. For dy; the data appear to
favor —0.02 D. It is seen that by neglecting the con-
tribution dy; we obtain a slightly poorer fit, and thus
even in this case, the nonlinearity of the dipole moment
is of no great significance. Of all the levels considered
only the 00°0-00°1, 00°1-00°2, 00°0-01'0, and 0290010
transitions are allowed in the absence of mechanical or
electrical anharmonicities. It thus appears that, at least
in CO,, the mechanical anharmonicity is more impor-
tant than the nonlinearity of the dipole moment in
breaking selection rules otherwise present. Eggers and
Crawford? have found comparable values for d; and dy;
however, the values of d12 and dy; were unknown. We are
now in a position to evaluate transition probabilities

1 B. L. Crawford, Jr., and H. L. Dinsmore, J. Chem. Phys. 18,
983, 1682 (1950).

1D. E. Burch, D. A. Gryvnak, and D. Williams, Appl. Opt. 1,
759 (1962).
(135%. J. Kostkowski and L. D. Kaplan, J. Chem. Phys. 26, 1252
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TaeLE V1. Lifetimes of some levels in CO. assuming
d2=020, dys=0, d;=045, and dy3=0.

Lifetime (sec)
with Se," experimental with Se,,®s theoretical

Radiation Radiation
Leve! Untrapped trapped Untrapped trapped
000 2.6 X107 4.9X102 24X107 5.0X107%
22107 with
cross relaxation
002 1.3x10%
(approx.}
010 {J even) 0.93 3.0 11 2.8
0110 (J odd) 0.93 0.99 1.1 11
0290 1.0
100 0.95 1.1
02% (J even 0.26
or odd)

between other levels of CO; not included in the present
tabulation should such information become of im-
portance in the exploration of CO; laser action.
Transition probabilities between two given vibra-
tional states, in general, may depend weakly upon the
particular J values involved. From Eq. (3.7) and Ref. 9
it follows that, depending on the particular transition,
8,7 is proportional to 27,+1, Ju+1, or Jp. As may
be seen from Eq. (3.1) this quantity must be divided by
2J »+1 and the resulting expression is either not or only
weakly dependent upon J,. In tabulating the A
coefficients in Table V we have arbitrarily assumed that
the upper level J is either 20 or 21, depending upon the
behavior of the molecular wavefunction under inver-
sion.”® In general, we have P and R branch transitions
corresponding to Af=+1 and AJ=—1, respectively,
which have practically the same 4 coefficients. For the
0110-00° transition, we have, in addition, a () branch
corresponding to AJ =0. The reason for the appearance
of all three types of branches in this transition lies in the
fact that two linear combinations between the 010 and
0170 can be made which behave differently under
inversion. One of these new states has only even J
rotational levels, and the other only odd ones. Lifetimes
may be calculated from the A4 coefficients. They are
given in Table VI for some of the states of interest.

IV. COMMENTS ON LASER ACTION IN CO,

Some of the 4 coefficients calculated in Table V are
not representative of the radiative lifetime because of
radiation trapping. For transitions terminating in the
ground state 00° trapping may be important. We have
to multiply Ama as given in Eq. (3.1) by a factor g to
take into account trapping of resonance radiation

£=1.60/[koR(r InkoR)¥]. (4.1)

In Eq. (4.1) R is the radius of a cylindrical tube con-
taining the plasma and kg is given by the expression

ko= (\¢*N rot/87) (g3/g1) (4 /7*v0). (4.2)

B A. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry

(John Wiley & Sons, Inc., New York, 1949), p. 261.
4 T. Holstein, Phys. Rev. 72, 1212 (1947); 83, 1159 (1951).

IN CARBON DIOXIDE 4283

In Eq. (4.2) A\ is the wavelength corresponding to the
transition, N is the density of molecules in the rota-
tional level in which the transition terminates, gz and g1
are the multiplicities of the upper and lower states, 2o is
the velocity of the molecules and 4 is the coefficient
calculated further above. Furthermore, N in Eq. (4.2)
is given by

Nooy=2"No(2J+1) exp—[BI(J+ V) (he/RT)]. (4.3)

In Eq. (4.3) J is the angular momentum of the rota-
tional level, B is the rotational constant which for CO,
is approximately® 0.3937 cm™, & is Boltzmann’s con-
stant, and 7 is the absolute temperature. Nois the total
number of molecules in the ground state, Z is the parti-
tion function which for the ground state is given by

w0 h
Zs 3 (2J+1)exp-lB](f+l);-;}. (4.4)

J=0,2.4

Assuming a temperature of 400°K, a radius of R=1 cm,
and a pressure of 1 Torr, one finds a g value of about
0.05 for the 001 to 00° transition for an upper level J
value of 21. Actually, radiation trapping is a strong
function of J. As a matter of fact, the transition origi-
nating in the J=21 level of the 00°1 vibrational state is
one of the most strongly trapped ones, and J values
both lower and higher are less strongly trapped. This is
because the population in the ground-state rotational
levels is lower for small and for large J levels. Since the
relaxation time hetween the various rotational levels is
rather short, a molecule may radiatively decay by first
making a transition to another J level and then making
a transition to the ground level. We can readily estimate
this effect by assuming that the relaxation between the
various rotational levels is infinitely fast. Assume that
the fraction of molecules in the Jth rotational state is
by=271(2J+1) exp—[BI(J+Vhe/kT] and that the
radiative lifetime of that level is given by 7. Under the
condition of rapid cross relaxation, the decay of a given
number of molecules IV in a certain vibrational level is
given by

(4.5)

and thus the over-all lifetime becomes 1/7=3 b;/7.
For the above example, we have evaluated that sum for
the 00°1 to 00° transition, and we obtain 7= 20 msec.
This is to be compared with a lifetime of about 50 msec,
when we neglect transitions between rotational levels of
the same vibrational state. These rotational transitions
are, of course, radiatively not allowed because CO; has
no permanent dipole moment. Transitions of this sort
are produced during collisions with other molecules.
For the 01'0 to 00°0 transition there is only little
radiation trapping. Note that the AJ=0 transition is
more strongly trapped. This is because this transition
has twice the transition probability of the AJ=-1
transitions which originate in levels with odd J values.
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It is quite clear that transition probabilities and life-
times quoted in this paper cannot account for the
relaxation of the laser states in CO,. In this laboratory
we have observed power outputs of up to 0.25 W/cm? of
discharge volume. This corresponds to 1.3X10% transi-
tions/cm?, and because there are about 2X10' mole-
cules of CO./cm? it is necessary to have every molecule
excited and emit laser radiation about once in every
107 sec. This, of course, necessitates relaxation times of
10~ sec and shorter. We believe relaxation occurs
predominantly through collisions with other molecules,
and light atoms like He are extremely effective in this
respect.® However, Table V shows that the 00°2 to 00°1
transition is relatively rapid and radiative processes
may be important in filling the upper laser state.
Tables IV and V indicate that for reasonable choices of
dy and dy3 the transition probability is higher for the
001 to 10°% transition than for the 00°1 to 02°) transi-
tion. This is in keeping with the observed fact that laser
action is more readily observed in the 00°1 to 10%
transition. Note, however, that absorption measure-
ments indicate a larger probability for the 00°1 to 02°0
transition. If the latter statement could be confirmed
through more accurate measurements then it would
mean that the 02° level would be more heavily popu-
lated than the 10°0 state.

Let us next estimate the population difference be-
tween the upper and lower laser levels to be typically
found in discharges. We use the relationship between
the gain and the population inversion given by Faust
et al.l® If we write J=J, expax, then

1 /In2\! /4 82
a= —(—-——) Rz(_)(fvﬁ rot™ i\rl l‘bt_) ’ (4 6)
dw\ 7 Av. £

where A is the wavelength, 4 is the transition proba-
bility as calculated above, Av is the linewidth, Vs ror and

18 R, N. Schwartz, Z. J. Slawsky, and K. F. Herzfeld, J. Chem.
Phys. 20, 1591 (1963).
(1;‘;_);&;. L. Faust and R. A, McFarlane, J. Appl. Phys. 35, 2010
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Nirot are the occupation of the upper and lower
rotational laser states, and g and gy describe the multi-
plicities of the levels. The value of a under optimum
conditions depends on the diameter of the discharge
tube used. In the first approximation a is inversely
proportional to the tube diameter. For a 1.25-cm
diameter we measure a=1.4X10"% cm™. With Ay
estimated at SX107 sec.™, we thus obtain N o
— N1 rotge/g1=T7.0X 108 cm=3, If we further take g»/g1
=1 and assume that the population in the various
rotational levels is described by a Boltzmann distribu-
tion with 7=400°K, then the difference in population
between the two vibrational levels becomes

Ng—-N1= (AMZ rot_Nl rot)Z(2J+ 1)—1
Xexp[BJ (J+1)(he/RT)]. (4.7)

Equation (4.7) with J=21 gives N,—N,;=1.1X10¥
cm®: In a Q-switching experiment one might expect,
under optimum conditions, to obtain a pulse with an
energy content approximately half of the energy stored
in the excited state. In the present example this works
out to be about 10.5X10~% J/cm?, Kovacs ef al'” have
reported an energy content of 1.1X 10~ J/pulse out of a
laser 150 cm long with a diameter of 2.5 cm. From our
estimates we would calculate for the same geometry an
upper limit to the energy content of 3.9 10~ J/pulse.
Because of losses and the fact that not all rotational
levels show laser action, these two numbers are reason-
ably consistent.
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