Model |
ERF_fixed_SST |
ERF_regres |
ECS |
TCR |
CS_param |
Clim_fdbk |
Planck_fdbk |
H2O_fdbk |
LR_fdbk |
Albdedo_fdbk |
Cloud_fdbk |
ECS/TCR |
(units) |
2×CO₂ (W m⁻²) |
2×CO₂ (W m⁻²) |
(°C) |
(°C) |
(°C (W m⁻²)⁻¹) |
(W m⁻² °C⁻¹) |
(W m⁻² °C⁻¹) |
(W m⁻² °C⁻¹) |
(W m⁻² °C⁻¹) |
(W m⁻² °C⁻¹) |
(W m⁻² °C⁻¹) |
n.a. |
ACCESS1.0 |
n.a. |
3 |
3.8 |
2 |
1.3 |
0.8 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
1.90 |
ACCESS1.3 |
n.a. |
n.a. |
n.a. |
1.7 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
BCC-CSM1.1 |
n.a. |
3.2 |
2.8 |
1.7 |
0.9 |
1.1 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
1.65 |
BCC-CSM1.1(m) |
n.a. |
3.6 |
2.9 |
2.1 |
0.8 |
1.2 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
1.38 |
BNU-ESM |
n.a. |
3.9 |
4.1 |
2.6 |
1.1 |
1 |
-3.1 |
1.4 |
-0.2 |
0.4 |
0.1 |
1.58 |
CanESM2 |
3.7 |
3.8 |
3.7 |
2.4 |
1 |
1 |
-3.2 |
1.7 |
-0.6 |
0.3 |
0.5 |
1.54 |
CCSM4 |
4.4 |
3.6 |
2.9 |
1.8 |
0.8 |
1.2 |
-3.2 |
1.5 |
-0.4 |
0.4 |
-0.4 |
1.61 |
CESM1(BGC) |
n.a. |
n.a. |
n.a. |
1.7 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
CESM1(CAM5) |
n.a. |
n.a. |
n.a. |
2.3 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
CNRM-CM5 |
n.a. |
3.7 |
3.3 |
2.1 |
0.9 |
1.1 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
1.57 |
CSIRO-Mk3.6.0 |
3.1 |
2.6 |
4.1 |
1.8 |
1.6 |
0.6 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
2.28 |
FGOALS-g2 |
n.a. |
n.a. |
n.a. |
1.4 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
GFDL-CM3 |
n.a. |
3 |
4 |
2 |
1.3 |
0.8 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
2.00 |
GFDL-ESM2G |
n.a. |
3.1 |
2.4 |
1.1 |
0.8 |
1.3 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
2.18 |
GFDL-ESM2M |
n.a. |
3.4 |
2.4 |
1.3 |
0.7 |
1.4 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
1.85 |
GISS-E2-H |
n.a. |
3.8 |
2.3 |
1.7 |
0.6 |
1.7 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
1.35 |
GISS-E2-R |
n.a. |
3.8 |
2.1 |
1.5 |
0.6 |
1.8 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
1.40 |
HadGEM2-ES |
3.5 |
2.9 |
4.6 |
2.5 |
1.6 |
0.6 |
-3.2 |
1.4 |
-0.5 |
0.3 |
0.4 |
1.84 |
INM-CM4 |
3.1 |
3 |
2.1 |
1.3 |
0.7 |
1.4 |
-3.2 |
1.7 |
-0.7 |
0.3 |
0 |
1.62 |
IPSL-CM5A-LR |
3.2 |
3.1 |
4.1 |
2 |
1.3 |
0.8 |
-3.3 |
1.9 |
-1 |
0.2 |
1.2 |
2.05 |
IPSL-CM5A-MR |
n.a. |
n.a. |
n.a. |
2 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
IPSL-CM5B-LR |
n.a. |
2.7 |
2.6 |
1.5 |
1 |
1 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
1.73 |
MIROC5 |
4 |
4.1 |
2.7 |
1.5 |
0.7 |
1.5 |
-3.2 |
1.7 |
-0.6 |
0.3 |
0.1 |
1.80 |
MIROC-ESM |
n.a. |
4.3 |
4.7 |
2.2 |
1.1 |
0.9 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
2.14 |
MPI-ESM-LR |
4.3 |
4.1 |
3.6 |
2 |
0.9 |
1.1 |
-3.3 |
1.8 |
-0.9 |
0.3 |
0.5 |
1.80 |
MPI-ESM-MR |
n.a. |
n.a. |
n.a. |
2 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
MPI-ESM-P |
4.3 |
4.3 |
3.5 |
2 |
0.8 |
1.2 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
1.75 |
MRI-CGCM3 |
3.6 |
3.2 |
2.6 |
1.6 |
0.8 |
1.2 |
-3.2 |
1.6 |
-0.6 |
0.3 |
0.2 |
1.63 |
NorESM1-M |
n.a. |
3.1 |
2.8 |
1.4 |
0.9 |
1.1 |
-3.2 |
1.6 |
-0.5 |
0.3 |
0.2 |
2.00 |
NorESM1-ME |
n.a. |
n.a. |
n.a. |
1.6 |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
n.a. |
Model_mean |
3.7 |
3.4 |
3.2 |
1.8 |
1 |
1.1 |
-3.2 |
1.6 |
-0.6 |
0.3 |
0.3 |
1.77 |
90%_uncertainty |
±0.8 |
±0.8 |
±1.3 |
±0.6 |
±0.5 |
±0.5 |
±0.1 |
±0.3 |
±0.4 |
±0.1 |
±0.7 |
|
|
|
Source: |
https://archive.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter09_FINAL.pdf#page=78 |
|
AR5 WG1 p.818 |
|
|
|
Table
9.5 |
Effective radiative forcing (ERF), climate
sensitivity and climate feedbacks estimated for the CMIP5 AOGCMs (see
Table 9.1
for model details). ERF, equilibrium climate sensitivity (ECS) and |
transient climate
response (TCR) are based on Andrews et al. (2012) and Forster et al. (2013)
and updated from the CMIP5 archive. The ERF entries are calculated according
to Hansen et al. (2005) using fixed sea |
surface
temperatures (SSTs) and Gregory et al. (2004) using regression. ECS is
calculated using regressions following Gregory et al. (2004). TCR is
calculated from the CMIP5 simulations with 1% CO2 increase per |
year (Taylor et
al., 2012b), using the 20-year mean centred on the year of CO₂
doubling. The climate sensitivity parameter and its inverse, the climate
feedback parameter, are calculated from the regression-based |
ERF and the ECS.
Strengths of the individual feedbacks are taken from Vial et al. (2013),
following Soden et al. (2008) and using radiative kernel methods with
two different kernels. The sign convention is such that a |
positive entry for
an individual feedback marks a positive feedback; the sum of individual
feedback strengths must hence be multiplied by −1 to make it comparable to
the climate feedback parameter. The entries for |
radiative forcing
and equilibrium climate sensitivity were obtained by dividing by two the
original results, which were obtained for CO₂ quadrupling. ERF and ECS
for BNU-ESM are from Vial et al. (2013). |
|
|
|
|
|
|
|
|
|
|
|
|
|
Notes:
1. This page is an exported spreadsheet, which can be loaded directly into Microsoft Excel.
2. I added the rightmost column (“ECS/TCR”), computed from the 4th & 5th columns. -DAB