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A B S T R A C T

Damage from tornadoes imposes substantial costs on society. This study provides an analysis of time trends
in the severity of losses from tornadoes in the United States for the period 1954–2018. Based on information
provided by the Storm Prediction Centre (SPC) of the U.S. National Weather Service, we create a dataset
of normalized losses from tornadoes spanning 65 years. We then analyse patterns and trends in the total
annual losses from tornadoes as well as distributional properties of the damage from individual tornadoes.
Our approach allows us to combine observations from the period 1954–1996, when losses from tornadoes
were typically reported in a range (e.g. $500,000–$5,000,000) with observations from 1997 onwards when
an actual estimate of the damage for an event is provided. Our findings suggest an overall national significant
decline in normalized losses from tornado events. At the country level, both the severity of damage from
individual events and the total annual losses from tornadoes are seen to have reduced over time. We also find
spatial variations in time trends for the damage from tornadoes: while for most U.S. states the declining trend
in severity is confirmed, an increasing trend of total annual losses from tornadoes is observed for Alabama.
1. Introduction

Tornadoes have been a significant source of natural hazard in the
United States and around the world, with single events having the po-
tential to cause more than $3 billion in damage (Simmons et al., 2013)
or resulting in more than 150 deaths. There is a significant concern that
the frequency and severity of tornadoes or extreme wind may further
increase due to climatic change (Knutson et al., 2010; Diffenbaugh
et al., 2013; Jung and Schindler, 2021; Outten and Sobolowski, 2021),
making appropriate risk assessment for tornadoes even more important
for policy makers, the insurance industry and home owners (Brooks
et al., 2014; Tippett et al., 2016). The acceleration of weather extremes
also induces the need for adaptation to mitigate potential damages
from natural hazards (Travis, 2014; Boero et al., 2015; Sillmann et al.,
2017). Given the potentially substantial losses from extreme weather
events, risk quantification also plays a critical role in climate adaptation
to reduce the vulnerability of housing and important infrastructure to
catastrophic events (Ross and Carter, 2011). Natural hazard risk assess-
ment is also useful for various organizations to enhance their operation
efficiency in presence of extreme weather (Zhang, 2021) and for people
who need to assess their need to purchase insurance (Mendes-Da-Silva
et al., 2021).

The quantification of economic damages from climate change and
climate impacted hazards has been examined in a large number of
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studies. For recent overviews on quantifying the economic risk of
climate change, see, e.g., Hoeppe (2016), Diaz and Moore (2017),
Auffhammer (2018), while Botzen et al. (2019) provide a review of
models and empirical studies on the economic impacts of natural
disasters. Some authors have also focussed more specifically on mod-
elling frequency and severity distributions for natural hazards. Esteves
(2013) examine the effect of different probability distributions on
modelling extreme events and propose an index for model uncertainty
that can be used in designing protection structures. Keighley et al.
(2018) use expert opinions to estimate distributional parameters and
further quantify costs associated with catastrophic risks from bushfires.
More recently, Pitt et al. (2020) investigate generalized additive mod-
els for location, scale and shape to estimate conditional probability
distributions and economic losses related to catastrophic events.

Despite the importance and direct relevance of tornado research,
reliable quantification of financial risks from tornado events as well as
estimation of trends in the severity of losses from tornadoes presents
a significant challenge. To date, the Severe Weather Database pro-
vided by the Storm Prediction Centre (SPC) is the main data source
for historical information on tornadoes in the United States, but a
significant portion of tornado losses are reported in a grouped data
format, making estimation of the tornado loss distribution especially
difficult (Elsner et al., 2013; Tippett et al., 2015). As observed by Tip-
pett et al. (2015), databases outside the U.S. also exist but typically
vailable online 5 June 2023
212-0947/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.wace.2023.100579
Received 1 November 2021; Received in revised form 29 May 2023; Accepted 1 Ju
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ne 2023

https://www.elsevier.com/locate/wace
http://www.elsevier.com/locate/wace
mailto:colin.zhang@mq.edu.au
mailto:stefan.trueck@mq.edu.au
mailto:chi.truong@mq.edu.au
mailto:david.pitt@unimelb.edu.au
https://doi.org/10.1016/j.wace.2023.100579
https://doi.org/10.1016/j.wace.2023.100579
http://crossmark.crossref.org/dialog/?doi=10.1016/j.wace.2023.100579&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Weather and Climate Extremes 41 (2023) 100579J. Zhang et al.

z
n
f
a

r
2
h

o
(

have insufficient length or quality for a thorough risk analysis. Predict-
ing tornado occurrence based solely on simulation models is difficult,
since theoretical arguments and climate model experiments generate
conflicting predictions about the impact of environmental conditions
on natural disasters (Diffenbaugh et al., 2013). Prediction methods
that make the most use of the available data are therefore important.
In this paper, we demonstrate a modelling approach that illustrates
the importance of normalizing loss data, i.e. adjusting loss data from
a sample period that spans several decades of growth in population,
wealth and infrastructure, therefore taking into account the substan-
tially increased loss exposure. The applied approach also allows us to
appropriately deal with grouped data for the estimation of tornado loss
distributions. The method that we propose for combining grouped data
with individual data can also be used in other areas such as storm surge
risk where adequate data are lacking (Wang et al., 2021).

The quantification of tornado risk has attracted a great number of
studies. Brooks and Doswell (2001) is an early study that analyses
normalized tornado losses for the U.S. over the period 1890–1995.
This study focuses on extreme tornado events for which at least 50
people are killed or real losses exceed $50 million. The resulted dataset
accounts for 50% of tornado losses in the SPC database and for these
data, no evidence of trend in tornado real losses is found. A similar
study by Boruff et al. (2003) examines the temporal variability and
spatial distribution of tornado hazards in the U.S. over the period 1950–
2000. It is found that the frequency of significant tornadoes (those that
cause death and positive damage) has increased from the 1950s to the
1970s and then decreased in the 1980s and 1990s. A similar trend is
found for the mean losses per year. The authors attribute the decrease
in tornado deaths and injuries over the last 50 years in their data
sample to the improved warning technology such as WSR-88D Doppler
radar network, increased warning lead times, and improved public
compliance with warnings. A shortcoming of these studies is that by
focusing solely on extreme tornado events, the results are not as useful
to risk mitigation. Recent mitigation studies suggest that risk mitigation
is more feasible and economic for less extreme tornadoes (Sutter et al.,
2009; Simmons et al., 2015; Ripberger et al., 2018).

Exposure to the tornado damage can increase over time due to
population change (e.g., expanding bull’s eye effect) and economic
growth (Ashley et al., 2014; Ashley and Strader, 2016; Strader and
Ashley, 2015; Strader et al., 2017; Simmons et al., 2013). Meaningful
statistical inference requires the use of normalization methods that
transform losses so that they have the same exposure. A recent study
by Simmons et al. (2013) examine the use of various normalization
methods for U.S. tornado damage based on the SPC database. They
find that different normalization methods lead to quite different results,
but normalized tornado losses generally experience a downward trend.
Ryan (2018) conducts a similar exercise for tornado losses in Florida
and finds that the frequency of tornadoes has actually decreased since
2002, but the lengths of tornado paths has increased.

Simmons and Sutter (2013) further analyse property damage caused
by tornadoes recorded in the SPC database. They find a slight decrease
of $3 million (in 2007 USD) per year, but the trend is not statisti-
cally significant. The authors also provide rankings of states according
to the proportions of records with positive damages, which may be
useful for the identification of states that have high tornado risk and
more complete data.1 More recently, Diaz and Joseph (2019) apply a
ero-inflated modelling approach in combination with artificial neural
etworks to predict tornado-induced property damages in the U.S. In a
irst step, the authors develop a neural network that predicts whether

tornado is likely to cause property damage, and then conditional

1 For example, Georgia is ranked 4th in total damage and has only 6.3% of
ecords with zero loss events; Indiana is ranked 2nd in total damage and has
0% of records with zero loss events; Ohio is ranked 7th in total damage and
as 8% of zero loss events.
2

e

on the outcome of the first step, a second neural network is applied
to predict the magnitude of the damage. The chosen approach allows
for detailed spatial predictions of tornado-induced property damages
that are presented in the form of maps, e.g. for Kansas, Alabama,
Illinois, Oklahoma, and Florida. Obtained simulation results suggest an
increased amount of high probabilities of damage from tornadoes for
the American south.

Total losses from tornadoes depend on not only the severities of
each tornado event but also on how frequent these events occur. Several
studies have used the SPC database to investigate how the frequency
of tornadoes vary over time. Tippett (2014) examine the frequency
of tornadoes in different scales and finds that the annual numbers of
F0+ (i.e. scales F0 and higher), F1+ and F2+ tornadoes as well as
the tornado environment index that is constructed based on convective
precipitation and storm relative helicity are all non-stationary. They
find an upward trend in the F0+ (i.e. scales F0 and higher) time series,
no trend in the F1+ and a downward trend in the F2+ time series. A
similar study by Brooks et al. (2014) examines the variability of annual
frequency for F1+ tornadoes over the period 1954–2013. It is found
that there is no long term trend in the mean tornado frequency but the
total number of tornado days in a year decreases over time, while the
number of days with 30 and more tornadoes actually trends up.

In a more recent study, Guo et al. (2016) use the approach by Brooks
et al. (2014) and examine the trend in the volatility of tornado fre-
quency at the state level. They find that only one third of the states,
mostly from the Great Plains and Southeast regions, have significantly
increasing trend, while the remaining states have decreasing or near
zero trends in tornado temporal variability. The authors suggest that
the increased variability in the Great Plains and Southeast regions
might be due to the changes in the environmental conditions required
to produce supercells or the conditions for landfalling tropical cyclones
or quasi-linear convective systems. In a related study, Edwards et al.
(2013) observe that the total land-path areas of tornadoes in the
United States covers only 103 km2 per year or 0.01% of the nation’s
conterminous land area. The idea that tornadoes are more region
specific is discussed in more detail in a review study by Moore and
DeBoer (2019). The authors provide evidence that suggest tornado
frequency and intensity increases for some regions, while for others,
they decrease. In addition, in the places where tornadoes often occur,
the direction of tornado paths have also changed.

The uncertainty about future tornadoes is further illuminated in the
study by Diffenbaugh et al. (2013) who examine the impact of global
warming on the frequency and severity of thunderstorms and torna-
does. They suggest that any prediction about future changes in these
extreme events is highly uncertain due to the lack of a reliable, indepen-
dent, long-term record of thunderstorms and in particular, tornadoes. It
is difficult to provide reliable predictions based on theories only since
predictions from theoretical arguments and climate model experiments
about the impact of environmental conditions on natural disasters are
sometimes conflicting. Based on the Coupled Model Intercomparison
Project, Phase 5 (CMIP5) global climate model ensemble, Diffenbaugh
et al. (2013) find an increase in the number of days supportive of
the spectrum of convective hazards, with the suggestion of a possible
increase in the number of days supportive of tornadic storms.2

In summary, the SPC database remains an important data source for
the study of tornadoes, despite its various discrepancies. The database
has been used to improve our understanding of the statistical properties
of tornadoes and facilitate risk management for these events in the
future. This brief review of the existing research shows that a trend
that is found at the national level may not hold at a more granular

2 The authors define a severe thunderstorm day based on the combination
f the convective available potential energy (CAPE), the vertical wind shear
a 6 km layer) and a tornado based on the combination of the CAPE and the
xistence of strong shear within the lowest atmospheric levels (1 km shear).
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scale. This suggests that tornado studies at the state or regional level
are particularly important. The review also suggests that this paper is
the first that attempts to use grouped data together with individual loss
data in the SPC dataset. It is also the first to investigate the dynamics
of normalized loss distributions in the U.S.

Our results suggest that loss normalization plays an important role
in estimating and predicting tornado loss distributions. Without nor-
malization, losses generally increase over time due to increased loss
exposure and inflation rather than more intense tornadoes. We also
find a downward trend in the expected normalized losses for the U.S.
and for Alabama, but a non-linear relationship for Texas. These results
corroborate the findings by Boruff et al. (2003) who find the declining
trend in tornado deaths and injuries and are consistent with the findings
by Moore and DeBoer (2019) that tornado losses can have different
trends in different states. This is also consistent with the findings
by Liang et al. (2020) who suggest that hurricane and storm surge
risk can change significantly from one area to the next. Different from
previous studies, we examine the dynamics of both the mean and the
volatility for the log of tornado losses and find that both of these
parameters have decreased in recent decades, leading to the decrease
in expected tornado losses. These results also suggest that tornado
losses have trended downwards in their average value and also in their
variation. In addition, we examine high quantiles of the estimated loss
distribution and find that the distribution has become less skewed and
heavy-tailed over time.

2. Data and preliminary analysis

2.1. The data

Our research uses a tornado event archive maintained by the US
government’s SPC. The SPC is part of the National Centers for Environ-
mental Prediction (NCEP) that operates under the National Weather
Service (NWS). The NWS is part of the National Oceanic and Atmo-
spheric Administration (NOAA) of the United States Department of
Commerce. The dataset has been applied in many studies and has often
been referred to as the ‘SPC dataset’ or ‘SPC data’, see, e.g., Simmons
et al. (2013), Cusack (2014), Guo et al. (2016), Fan and Pang (2019),
Moore and DeBoer (2019), just to name a few. According to Gall et al.
(2009), the initial data collection process of NWS could be a source of
systemic biases, involving the computation of losses and the source of
the information. Furthermore, the data collection procedure was not
entirely consistent, as NWS shifted from reporting grouped loss data to
reporting the actual dollar amount of the loss after 1995 (Gall et al.,
2009). Despite changes in the collection process for the SPC dataset
over the last 70 years,3 it is worth highlighting that the dataset is
most likely the best source of information on losses from tornadoes
available and generally considered as being reliable. As pointed out
by Simmons et al. (2013), the SPC dataset has been recorded by a single
government agency using a relatively consistent approach to damage
data collection. Therefore, the dataset is suitable for the application of
a normalization approach and statistical techniques in the context of
uncertainties in damage estimates.

As natural hazard loss databases, including the SPC dataset, may
have data inhomogeneity, see e.g., Gall et al. (2009), suitable treat-
ments need to be taken when using these databases. The most im-
portant bias is the temporal bias where losses across time are not
directly comparable due to changes in loss exposure. We overcome this
bias by using the normalization method described in Section 2.2. In
addition, the improvements in radar technology also affect the number
of tornado events reported in the database. As discussed by Agee
and Childs (2014), the implementation of the Weather Surveillance

3 Interested readers can refer to Simmons et al. (2013) for additional details
n the collection process and reliability of the SPC dataset.
3

Radar-1988 Doppler (WSR-88D) network in the early 1990s allows
for the possibility of detecting mesocyclones that may produce weak
tornadoes. This leads to an increase in the number and variability of
F0/EF0 tornadoes. To overcome this reporting bias, we follow Tippett
(2014) and exclude F0/EF0 tornadoes from our analysis.

Another important temporal bias in the SPC dataset relates to the
reporting methods used before and after 1995. Before 1995, the group
to which a loss belongs, rather than its actual amount, is reported while
after 1995, the actual amounts of losses are reported. Generally this
type of grouped data can cause a bias in the statistical estimation.
Thus, neither a midpoint (mid) or maximum (max) value approach
for using grouped data is appropriate to estimate the losses in an
accurate manner. However, the innovative approach proposed in this
study (Khemka et al., 2023) is designed to exactly deal with this type
of problem.

The SPC dataset also has the threshold bias. According to the de-
cription from SPC, prior to 1996, a zero entry indicates an unknown
mount. However, after 1996, entry of zero means unknown amount or
ounded amount. Based on the data, we find that 38.4% of our loss data
re recorded as zero. To avoid this bias, we truncate our data at $1000
o exclude those unknown or negligible amounts. Gall et al. (2009)
lso discuss the issue of a potential accounting bias, where monetary
nd direct losses reported in loss databases are biased estimates of the
otal losses caused by an event. We therefore emphasize that our study
s focused on estimating the distribution of quantified monetary losses
aused by tornadoes, rather than also including indirect losses. While
his approach might have its limitations, it would be far more difficult

if not impossible – to also include estimates of indirect losses into
ur framework. We argue that although our findings are limited to
onetary losses, they are still of significant interest to homeowners,

nsurance companies as well as government.
Tornado records contain information on the time and location4 of

he tornadoes, and the Fujita (F) or Enhanced-Fujita Scale (EF0+) scale
hat rates tornadoes based on their maximum damage. The dataset
lso contains the estimated amount of property loss and crop loss with
osses prior to 1996 reported in nine categories.5 In addition, from 1996
o 2015, loss amounts are rounded and recorded in million dollars,
nd since 2016, loss amounts are rounded and recorded in actual
ollar amounts. After excluding F0 tornadoes and those with zero loss
ecords, there are 28,903 tornadoes remaining in our dataset. Most of
hese tornadoes (95.91%) occur entirely in one state, and only 1153
nd 28 tornadoes pass through two and three states, respectively. The
esults from Fig. 1 suggest that while there is no trend in the overall
nnual frequency of tornadoes, the number of more severe tornadoes
as actually decreased.

As mentioned above, the SPC dataset also allows for a classification
f tornadoes based on generated losses into nine categories. Fig. 2
llustrates that for most loss categories, the number of loss events
eems to be increasing. We find that except for Category 2 and 3, the
requency of tornadoes in each category indicated an upward trend.
n particular, we find a clear rise in the number of tornadoes with
evere losses, i.e. Category 5, 6 7, and 8, for the considered time
eriod from 1950 to 2018. It is noteworthy that at first glance these
esults seem to contradict the observation of a decreasing frequency of
ornadoes with high intensity in the first place. However, as pointed
ut by Simmons et al. (2013) simply considering reported loss figures

4 This includes the initiation point, the endpoint (longitude and latitude),
he date and time of occurrence, the length and width of the damage path

5 More specifically, 0 or blank indicates unknown loss; 1 means less than
50, 2 means $50–$500, 3 means $500–$5000, 4 means $5000–$50, 000, . . . , 8

means $50, 000, 000–$500, 000, 000, and 9 means more than $5, 000, 000, 000
6 For some tornadoes with unknown F-scale, a modified F-scale based on

property loss and path length is provided. In this paper, we do not consider
these modified F-scale. Details about modified F-scales are available at https:

//www.spc.noaa.gov/wcm/OneTor_F-scale-modifications.pdf.

https://www.spc.noaa.gov/wcm/OneTor_F-scale-modifications.pdf
https://www.spc.noaa.gov/wcm/OneTor_F-scale-modifications.pdf
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Fig. 1. Number of tornadoes per year for different F-scale categories over the sample period 1954–2018. Tornadoes that cover more than one state are counted only once. Tornadoes
with F-scale F0 or unknown F-scale are excluded.6Fig. 1 depicts the evolution of tornado frequency over time for each F-scale and for all the considered F-scales (F1–F5). The
graphs illustrate that the frequency of tornadoes with a rating of F1 on the F-scale has been increasing throughout our sample period, while the frequency of tornadoes with
intensity ratings of F2, F3, F4, and F5 has been decreasing.
Fig. 2. Number of tornadoes per year across loss categories 1: less than $50, 2: $50–$500, 3: $500–$5000, 4: $5000–$50, 000, . . . , 8: $50, 000, 000–$500, 000, 000. Tornadoes that cover
more than one state are counted only once.
without normalizing the data does not allow for a rigorous analysis of
trends in the loss and magnitude of tornadoes in a historical context.
Given the substantial impact of inflation on reported losses over a 65
year time horizon as well as significant changes in wealth per capita
and population, normalizing the reported losses is paramount for an
appropriate analysis of the severity of tornadoes through time. Thus,
in the following we discuss the implementation of a normalization
approach that allows us to compare individual loss events.
4

2.2. Proportional normalization for damage data

Independent of physical changes in the frequency or severity of
tornadoes, losses may grow over time simply due to economic or
population growth in a region, or because the wealth or property values
in the studied region have increased over time (McAneney et al., 2009;
Simmons et al., 2013; Strader et al., 2017; Diaz and Joseph, 2019).
A related concept that plays a major role in the exposure growth is
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Fig. 3. Annual normalized losses and fitted regression line for normalized losses at the national level for 1954–2018. Results are illustrated for total annual losses (left panel) and
average annual losses (right panel).
Table 1
Descriptive statistics for normalized tornado loss events for 1954, 1960, 1970, 1980, 1990, 2000, 2010 and 2018.
Year Normalization

index
Number of
events

Mean
(in millions)

Median
(in millions)

95th
percentile
(in millions)

Standard
deviation
(in millions)

Skewness Kurtosis

1954 53.19 398 13.01 1.46 14.63 105.21 13.28 181.34
1960 38.60 443 9.38 1.06 10.61 72.68 13.83 198.34
1970 19.70 429 24.00 0.54 54.19 267.69 19.30 387.93
1980 6.28 545 19.16 1.73 17.27 6.38 11.13 125.26
1990 3.49 458 6.09 0.96 9.60 18.56 4.48 18.98
2000 2.13 269 3.31 0.32 10.66 14.82 8.02 70.28
2010 1.31 405 7.27 0.26 6.76 61.31 12.74 179.02
2018 1.00 342 1.96 0.09 2.98 14.60 10.70 124.17
t
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the so-called expanding bull’s eye effect (Ashley et al., 2014; Ashley
and Strader, 2016; Strader and Ashley, 2015) that emphasizes that
‘targets’ for natural disasters, i.e. the number of humans and the related
infrastructure and possessions, are enlarging as the population in a
region grows and spreads. As a result this expanding development also
creates larger areas of potential impacts from natural hazards. For an
adequate analysis or comparison of a natural disaster loss dataset that
spans over several decades, it is therefore paramount to appropriately
take into account changes in the exposure component through time.

To make the tornado losses in our dataset comparable over time,
we apply a normalization approach to bring all loss data to the 2018
dollar level. Normalization techniques have been widely used in natural
disaster studies to make loss data comparable, see e.g. Pielke et al.
(2008), McAneney et al. (2009), Simmons et al. (2013) and Weinkle
et al. (2018). Loss normalization is especially important given that our
data spans a long horizon of almost 70 years.

The nominal loss 𝐷𝑡,𝑖 for event 𝑖 that is recorded in the SPC database
in year 𝑡 can be converted into a normalized loss amount 𝐷2018,𝑖
denominated in 2018 dollars as follows:

𝐷2018,𝑖 = 𝐷𝑡,𝑖 × 𝐼𝑡 × WPC𝑡 × 𝑃𝑡,𝑖, (1)

here 𝐼𝑡 is the inflation adjustment to convert the money value in year
to the value in 2018, WPC𝑡 is the real wealth per capita adjustment

n year 𝑡 and 𝑃𝑡,𝑖 is the population adjustment for event 𝑖 in year 𝑡.
To provide reliable normalized losses, we utilize the same data

n inflation, real wealth per capita and population that have been
sed by Weinkle et al. (2018) for normalizing hurricane losses. As
ocumented in Weinkle et al. (2018), the inflation adjustment is based
n the implicit price deflator for gross domestic product for the years
954–2018 provided by the U.S. Bureau of Economic Analysis (BEA).
he nominal wealth estimates are based on the national current-cost
et stock of fixed asset and consumer durable goods, also provided by
he U.S. Bureau of Economic Analysis. The population adjustment is
ased on the total population size data of United States supplied by the
5

nited States Census Bureau. 𝐿
To illustrate the applied procedure, consider the loss from the 300th
ornado in 1978 that occurred in Kansas. The implicit price deflator
f 2018 is 114.216 and the implicit price deflator of 1978 is 37.602.
ence, the inflation adjustment for 1978 is 𝐼1978 = 114.216∕37.602 =
.037. The national wealth in 1978 and 2018 are $8.037 trillion and
65.861 trillion, respectively. The wealth adjustment for 1978 is there-
ore 𝑊𝑃𝐶1978 = 65.861∕8.037 = 8.19. The population size of United
tates in 2018 is 330.604 million and that for 1978 is 221.879 million,
nd therefore 𝑃1978,300 = 1.490 = 330.604∕221.879. Hence, the overall
djustment for this 300th tornado in 1978 is

2018,300 = 𝐷1978,300 × 𝐼1978 × WPC1978 × 𝑃1978,300

= 𝐷1978,300 × 3.037 × 8.19 × 1.490.

.3. Time trends in normalized loss data

In the next step we examine trends for normalized losses from
ornadoes. Firstly, we calculate individual normalized loss data from
954–2018 (for data prior to 1995, we use the mid-point of the interval
f the loss category). Then we calculate the total loss from tornadoes for
he United States as well as the average loss from an individual tornado
vent in the U.S. for each year. Table 1 provides descriptive statistics for
ormalized tornado loss events for the first year of our sample period
954, for 1960, 1970, 1980, 1990, 2000, 2010 and for the final year
f the sample period 2018. Given that losses from natural hazards such
s tornadoes are typically heavy-tailed, average loss observations for a
articular year are often driven by individual extreme events. However,
he results in Table 1 seem to indicate that after an initial increase
n the average magnitude of losses from tornado events between 1954
nd the 1970/80s, there has been a substantial decline in the average
ormalized loss from tornadoes at the national level.

To further examine the issue, we regress the total annual loss per
ear as well as the average loss from a tornado event for each year
gainst time, i.e. we run a simple linear regression model of the form
𝑜𝑠𝑠𝑡 = 𝛼 + 𝛽 × 𝑡 (𝑡 = 0, 1,… ., 64) (2)
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Fig. 4. Annual normalized total losses and fitted regression line for the states of Texas (left panel) and Alabama (right panel) for 1954–2018.
F
G
N

Table 2
Results for regressing total annual losses and annual average losses on time at the
national level, for the state of Texas and for the state of Alabama.

Regressors Annual loss Annual loss
of Texas

Annual loss of
Alabama

alpha 2.34E+11 1.84E+10 −8.6E+09
p-value 0.0033 0.185219 0.523131
t-value 3.0514 1.339504 −0.64211

beta −1.15E+08 −9008741 4471185
p-value 0.0040 0.196601 0.510367
t-value −2.9869 −1.30511 0.662029

R-Square 0.1240 0.0263 0.0069

Regressors Annual average
loss

Annual average
loss of Texas

Annual average
loss of Alabama

alpha 463321515 1.74E+08 4.68E+08
p-value 0.0006944 0.452416 0.107511
t-value 3.5679154 0.756085 1.632746

beta −227924.2 −82602.5 −230250
p-value 0.0008988 0.478504 0.115312
t-value −3.48595 −0.71296 −1.59681

R-Square 0.1617 0.0080 0.1188

for the time period 1954 (𝑡 = 0) to 2018 (𝑡 = 64). The results are shown
in Fig. 3 in which the left panel presents results for regressing the total
normalized annual loss on 𝑡, while the right panel shows results for
regressing the average normalized loss from an event each year on 𝑡.
The analysis suggests a declining trend in the magnitude of total annual
normalized losses as well as in the average normalized loss from a
tornado event for the considered sample period.

Table 2 also reports estimated coefficients for the applied regression
analysis. We find that at the national level both for total annual losses
as well as for average annual losses the trend coefficients are negative
and highly significant. Thus, our results suggest that when considering
normalized losses from tornado events, the severity of total annual
losses has significantly decreased throughout the considered sample
period. Interestingly, despite an increase in the number of reported
events from higher loss categories, see Fig. 2, we also find that there is
a significantly decreasing trend in total normalized annual losses from
tornadoes. Thus, our findings reiterate the results of Simmons et al.
(2013) who emphasize the importance of normalizing loss data to draw
adequate conclusions about the severity of natural hazards.

We also examine losses from tornadoes at the individual state level.
The geographic dimension of changes in the risks from natural hazards
or the impacts of climatic change has been pointed out in many studies,
see, e.g., Moore and DeBoer (2019). We therefore decided to conduct
the same trend analysis for total and average normalized annual losses
for the 20 states in the U.S. with the highest frequency of tornado events
6

r

throughout our sample period.7 For 18 out of the 20 considered states
we found a decreasing time trend for total annual normalized losses
from tornado events, while only for two states, Alabama and Illinois,
we observed an increasing trend. Furthermore, for all 20 states the
time trend for the average normalized loss from a tornado event was
decreasing throughout our sample period. In the following, we will only
report the results for two of these states, namely Texas and Alabama,
in more detail. Note that Texas was chosen, since it is the state with
the highest number of events throughout our sample period. We also
decided to include Alabama as one of two states with an increasing
trend in the total annual normalized loss from tornado events.8 Results
for the conducted analysis are reported in Figs. 4 and 5 and Table 2.

Fig. 4 illustrates an decreasing trend in total annual normalized
losses for the state of Texas, while it suggests that there has been an
increasing trend in total losses for the state of Alabama for the 1954–
2018 sample period. However, as indicated in Table 2 the estimated
coefficients for the trend line are not significant and the explanatory
power of the fitted model is quite low. Interestingly, for the average
normalized annual losses from tornado events, we find a declining trend
for both states as illustrated by Fig. 5. However, also here, the estimated
slope coefficients are not significant. The observed results of Texas
and Alabama confirm the geographic dimension of changes in the risk
profile for the severity of tornado losses in different states (Moore and
DeBoer, 2019).

3. Fitting probability distributions

Given our preliminary results on time trends in the severity of losses
from tornadoes, as a next step we aim to fit appropriate severity distri-
butions for the economic loss caused by an individual tornado through
time. Hereby, we apply an approach that allows us to adequately deal
with a mix of grouped data for the period 1954–1995 and actual loss
estimates for the period 1996–2018.

Recall that prior to 1996, SPC loss data are recorded as grouped
data with the ranges shown in Table 3. Following Eq. (1), we then
normalized annual grouped loss data at the country level by using
the adjustment factors from Weinkle et al. (2018). To make the loss
intervals for each group consistent with the applied normalization
procedure, we also normalized the group ranges, using country level
normalization factors. For example, for the year 1978, the country

7 These states included (in ascending order of tornado frequency) Texas,
lorida, Mississippi, Iowa, Missouri, Alabama, Oklahoma, Kansas, Louisiana,
eorgia, Illinois, Nebraska, Arkansas, Indiana, Wisconsin, Tennessee, Ohio,
orth Carolina, Kentucky, Michigan.
8 Results for the other states are not presented here, but are available upon
equest to the authors.
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Fig. 5. Average normalized losses for tornado event in one year and fitted regression line for the states of Texas (left panel) and Alabama (right panel) for 1954–2018.
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Table 3
Group range for data prior to 1996.
Group code Group range

0 Unknown loss
1 0–$50
2 $50–$500
3 $500–$5,000
4 $5,000–$50,000
5 $50,000–$500,000
6 $500,000–$5,000,000
7 $5,000,000–$50,000,000
8 $50,000,000–$500,000,000
9 More than $500,000,000

level index is 8.1951. Hence, group 1 has range of 0–$50 × 8.1951,
group 2 has range of $50 × 8.1951–$500 × 8.1951... group 8 has range
of $50, 000, 000×8.1951–$500, 000, 000×8.1951 and group 9 has range of
more than $500, 000, 000 × 8.1951.

3.1. Maximum likelihood method

Assume that we have a set of grouped data with a total of 𝑇
observations which are divided into 𝑁 groups. For group 𝑖, we have
the lower limit 𝑧𝑖−1 and upper limit 𝑧𝑖. To apply MLE to the grouped
data, we need to define the predicted fraction of observations in each
group as

𝑃𝑖(𝑦;𝛷) = 𝐹𝑦(𝑧𝑖;𝛷) − 𝐹𝑦(𝑧𝑖−1;𝛷),

𝐹𝑦(𝑧𝑖−1;𝛷) denotes the cumulation distribution function of the chosen
model with parameters 𝛷 evaluated at 𝑧𝑖−1 and where 𝑖 = 1, 2,… , 𝑁 .
Then the likelihood function can be found as

𝐿(𝑦;𝛷) = 𝑇 !
𝑁
∑

𝑖=1

𝑃𝑖(𝑦;𝛷)𝑇𝑖
𝑇𝑖!

.

By applying numerical methods to maximize the above expression, the
parameter vector, 𝛷 can be obtained via the MLE estimator.

3.2. Generalized method of moments

Following Khemka et al. (2023), we apply a maximum likelihood
estimator (MLE) (Hinkley and Cox, 1979; Klugman et al., 2012) as
well as a generalized method of moments (GMM) estimator (Hajargasht
et al., 2012) to fit a severity distribution for the grouped data.

In the following we use 𝛷 to denote the vector of unknown param-
eters. The GMM estimator �̂� can be defined as

�̂� = arg min𝐇(𝛷)′𝐖𝐇(𝛷) (3)
7

𝛷
H

where 𝐇(𝛷) is a vector that measures the difference between sam-
le moments and population moments, and 𝐖 is a symmetric and
ositive definite weight matrix. The expected value of 𝐇(𝛷) is zero,
.e., 𝐸[𝐇(𝛷)] = 0. Changes in the weight matrix 𝐖 may result in
hanges in the variance of the GMM estimator, and the optimal weight
atrix is the one that provides an efficient GMM estimator with

mallest asymptotic variance. Following Cameron and Trivedi (2005)
nd Hajargasht et al. (2012), we can use the inverse of the covariance
atrix of the limiting distribution of 𝑁1∕2𝐇(𝜱) to find the optimal
eight matrix.

The GMM approach has been modified in Hajargasht et al. (2012)
o estimate the parameters of the underlying distribution for grouped
ata. Specifically, the grouped dataset has the information of group
imits (calculated based on Table 3 with normalization as described
bove), proportion of observations in each group and the mean value
f each group.

In order to use the GMM approach, we assume that the total number
f observations for tornado damage in our sample data is 𝑇 and these
ata are classified into 𝑁 groups. 𝑧𝑖, 𝑐𝑖 and 𝑦𝑖 are defined as the group
imits, the proportion of observations and the mean value of group 𝑖.
he number of observations in group 𝑖 is 𝑇𝑖. The vector of differences
etween sample and population proportions in each group and the
ample and population contributions to the overall mean is

(𝛷) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑐1 − 𝑘1(𝛷)
⋮

𝑐𝑁 − 𝑘𝑁 (𝛷)
�̃�1 − 𝜇1(𝛷)

⋮
�̃�𝑁 − 𝜇𝑁 (𝛷)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4)

here 𝑘𝑖(𝛷) is the population proportion of observations in the 𝑖th
roup,

𝑖(𝛷) = ∫

𝑧𝑖

𝑧𝑖−1
𝑓 (𝑦;𝛷)𝑑𝑦 𝑖 = 1, 2,… , 𝑁,

here 𝑓 (𝑦;𝛷) is the probability density function for the severity model
eing estimated and �̃�𝑖 is the contribution of the 𝑖th group mean to the
verall mean, and is defined as

�̃�𝑖 = 𝑐𝑖�̄�𝑖.

he corresponding population quantity 𝜇𝑖(𝛷) is defined as

𝑖(𝛷) = ∫

𝑧𝑖

𝑧𝑖−1
𝑦𝑓 (𝑦;𝛷)𝑑𝑦 𝑖 = 1, 2,… , 𝑁.

ntuitively, the identity matrix (𝐖 = 𝐈) is the simplest form of the
eight matrix 𝐖 in Eq. (3). However, from Eq. (4), it is clear that

he last 𝑁 terms of 𝐇(𝛷) are much larger than the first 𝑁 terms.

ence, applying an identity matrix, which gives a substantial weight
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Fig. 6. Annual parameter estimates for 𝜇 (left panel) and 𝜎 (right panel) for the time period 1954–2018. Parameter estimates are reported for lognormal distributions with
parameters estimated using the GMM and MLE approaches.
Fig. 7. Estimated values of 𝜇 (left panel)and 𝜎 (right panel) for fitted lognormal distributions to the grouped data via GMM and MLE. The series 𝜇′
𝑀𝐿𝐸 (left panel) and 𝜎′

𝑀𝐿𝐸
(right panel) illustrate the estimated values for 𝜇 and 𝜎 when a lognormal distribution is fitted to the individual loss data.
to the group mean terms, might not be appropriate. To overcome this
issue, Hajargasht et al. (2012) state the optimal weight matrix as

𝐖 =
[

𝐃(𝐰𝟏) −𝐃(𝐰𝟑)
−𝐃(𝐰𝟑) 𝐃(𝐰𝟐)

]

(5)

here 𝐃(𝐱) denotes a diagonal matrix with elements of the vector 𝐱
n the main diagonal. 𝐰𝟏, 𝐰𝟐 and 𝐰𝟑 are 𝑁-dimensional vectors with
lements 𝑤1𝑖 = 𝜇(2)

𝑖 ∕𝜈𝑖, 𝑤2𝑖 = 𝑘𝑖∕𝜈𝑖 and 𝑤3𝑖 = 𝜇𝑖∕𝜈𝑖. 𝜇
(2)
𝑖 is defined as

(2)
𝑖 = ∫ 𝑧𝑖

𝑧𝑖−1
𝑦2𝑓 (𝑦;𝛷)𝑑𝑦 and 𝜈𝑖 = 𝑘𝑖𝜇

(2)
𝑖 − 𝜇2

𝑖 .
The GMM objective function can then be shown as

(𝛷)′𝐖𝐇(𝛷) =
𝑁
∑

𝑖=1
𝑤1𝑖

(

𝑐𝑖 − 𝑘𝑖
)2 +

𝑁
∑

𝑖=1
𝑤2𝑖

(

�̃�𝑖 − 𝜇𝑖
)2

− 2
𝑁
∑

𝑖=1
𝑤3𝑖

(

𝑐𝑖 − 𝑘𝑖
) (

�̃�𝑖 − 𝜇𝑖
)

. (6)

y applying numerical methods to minimize the above expression, we
an find the GMM estimator for the parameter vector, 𝛷.

.3. Results at the national level

We first use calendar years to create an annual dataset for the
eriod 1954–2018. Specifically, we use the grouped data from 1954
o 1995 and aggregate the individual loss amounts for each event
cross each calendar year from 1996 to 2018. Then, for each yearly
rouped dataset from 1954 to 2018, we use MLE as well as the GMM
pproach described above to estimate the parameter values for a fitted
ognormal distribution. To further test the accuracy of our approach,
e grouped the data after 1995 by using the normalized group borders
nd use MLE and the GMM approach to estimate the parameters of
8

a lognormal distribution fitted to the grouped data. Estimated values
for the location parameter 𝜇 and scale parameter 𝜎 for data from
1954–2018 are provided in Fig. 6.

Fig. 6 illustrates that the two approaches provide qualitatively
similar results. For both approaches 𝜇 appears to be decreasing through
time, while 𝜎 seems to increase between 1954 and the mid 1980s and
shows an overall decreasing trend afterwards. Our results also suggest
that the GMM approach seems to yield slightly higher estimates for 𝜇
and 𝜎 in comparison to the MLE approach. This is true in particular
for the period 1954 to 1995 when only grouped data are available.
We also find that the differences between the estimates for 𝜇 are less
pronounced for the period 1996 to 2018 when individual loss data are
available.

We further compared these estimated results for the grouped data
from 1996 to 2018 with results via the MLE approach by fitting
individual data from 1996 to 2018 in Fig. 7. The figure shows that the
GMM approach can produce parameter estimates that are very close to
the results of using an MLE approach for the individual data. Using
individual data and the estimated parameters provided by the two
approaches, we obtained log likelihood values that are very similar,
which suggests that the GMM method based on grouped data can
produce quite accurate parameter estimation.

Using parameters estimated by the GMM approach year by year, we
plot normalized loss distributions in Fig. 8. The figure clearly shows the
large impact of tornadoes in 1956 and 1965 that make tornado losses
in recent years to appear small. Our results are broadly consistent with
the results presented by Simmons et al. (2013) despite some differences
in the method that we use. While our normalization method allows
for the growth in loss exposure due to the development in inflation,



Weather and Climate Extremes 41 (2023) 100579J. Zhang et al.

p
i
h
c
t
a
t

f
t
c
d
𝜇

l
l
a

Fig. 8. Expected loss as well as 90th and 95th percentile of the loss distribution from 1954 to 2018 by using the results of GMM approach.
Fig. 9. Cubic polynomial fit to estimated annual parameter estimates for 𝜇 (left panel) and 𝜎 (right panel) of a lognormal distribution based on the applied GMM approach.
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opulation and wealth, Simmons et al. (2013) allows for only the
mpact of inflation. In addition, Simmons et al. (2013) utilize an ad
oc approach to obtain average losses while we provide a statistically
onsistent method that allows to estimate the whole distribution of
ornado losses. These differences in methods are translated to more
ccurate estimation of loss distributions and lower levels of normalized
ornado losses in recent years.

Next we examine time trends in the estimated parameters for the
itted lognormal distributions for economic loss caused by an individual
ornado. For both the annual GMM estimates of 𝜇 and 𝜎, we fit a
ubic spline to identify changes across time in the estimated severity
istribution.9 Fig. 9 illustrates the annual estimates of the parameters
and 𝜎 as well as the fitted spline function. The results clearly confirm

9 To further verify our findings, we applied generalized additive models for
ocation, scale, and shape to fit all of the data from every year into a single
ognormal distribution, finding that the location and scale parameters exhibit
decreasing trend over time.
9

the decreasing trend in 𝜇 and suggest an initially increasing and then
decreasing trend in the estimates for 𝜎 through time.10

Overall, these results seem to suggest that the magnitude of losses
rom individual tornado events has decreased considerably for the
ample period from 1954–2018 (we observe this trend in Fig. 8).
ote, however, that both 𝜇 and 𝜎 impact in different ways on the

shape of the lognormal distribution. For example, the median of a
lognormal distribution is simply exp(𝜇), while the mean (exp(𝜇+0.5𝜎2))
s well as the quantiles of the distribution depend both on 𝜇 and
. In particular, high values of the scale parameter 𝜎 can lead to
xtreme values for higher quantiles of the loss distribution. Table 4

10 Note that the fit of the cubic spline model is highly significant for 𝜇,
here all coefficients are significant at the 1% level and the model yields a
igh explanatory power of 𝑅2 = 0.7417. For 𝜎 due to a high variation in the

estimated coefficients, the fit of the cubic spline model yields insignificant
coefficients and a much lower coefficient of determination of 𝑅2 = 0.0823.
Detailed estimation results are not reported here but are available upon request

to the authors.
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Table 4
Descriptive statistics for fitted total annual loss of 1954, 1960, 1970, 1980, 1990, 2000, 2010 and 2018 by using GMM.
Year 𝜇𝐺𝑀𝑀 𝜎𝐺𝑀𝑀 Mean

(in millions)
Median
(in millions)

90th
percentile
(in millions)

95th
percentile
(in millions)

Standard
deviation
(in millions)

Skewness Kurtosis
(in millions)

1954 13.00 2.23 5.3290 0.4431 7.7232 17.3662 38.8762 1758.016 444.1545
1960 12.64 2.30 4.3430 0.3090 5.8830 13.5628 37.0214 2796.988 1537.6400
1970 12.75 2.35 5.4420 0.3455 7.0044 16.4384 51.9867 3930.601 3817.4338
1980 12.65 2.37 5.1511 0.3102 6.4719 15.3128 51.8785 4603.046 5821.1714
1990 12.53 2.40 4.9781 0.2779 6.0385 14.4535 54.0907 5776.076 10674.4112
2000 12.61 2.10 2.7191 0.2987 4.4156 9.4754 15.0121 767.7695 48.2949
2010 12.27 2.22 2.4914 0.2140 3.6607 8.1877 17.5953 1596.131 342.9836
2018 11.30 2.25 1.0259 0.0807 1.4524 3.2948 7.9056 2069.768 687.3729
Fig. 10. Expected loss as well as 90th and 95th percentile of the loss distribution from 1954 to 2018 by using the results of GMM approach (Cubic fit).
rovides additional information on the estimated loss distribution for
he severity of tornado events at different points in time, namely,
t the beginning of the sample period in 1954, for every decade,
.e. 1960, 1970, 1980, 1990, 2000, 2010, and at the end of our sample
eriod in 2018. The table illustrates that the mean and median as
ell as the higher quantiles of normalized losses from tornado events,
fter an initial increase towards the 1970s and 1980s, have reduced
ignificantly over the sample period. The estimated mean for loss events
n 1954 was around $5.33 million, while it was only $1.03 million in
018. The normalized median loss was $0.44 in 1954 and only $0.08 in
018. Note that the declining trend in losses from tornadoes is directly
elated to normalizing the data. As illustrated in Table 1 the applied
ormalization factors for losses from earlier years of the sample period
re quite substantial, e.g. 53.19 for loss observations from 1954, 38.60
or losses from tornadoes in 1960, etc. However, ignoring adjustment
actors related to inflation, wealth per capita and population growth
ould lead to incorrect estimates of trends in the loss distribution,

ince losses over a 70 year period are not comparable unless they are
ormalized in an appropriate manner. As illustrated in Section 2.3, for
ur normalization procedure we follow Weinkle et al. (2018), using a
ethod widely accepted in the current literature on assessing losses

rom natural hazards. The use of normalized data then allows us to
dequately analyse patterns and trends in the severity of hurricanes in
he U.S.

Based on the cubic spline fit to the estimated parameters for the
everity distribution, we provide a plot of the expected loss as well as
10
the 90th and 95th percentile of the loss distribution for the 1954 to
2018 sample period. Fig. 10 shows the substantial drop in the expected
normalized loss from a tornado over the considered time period. In
2018 dollar values the expected loss from a tornado was approximately
$8, 000, 000 in 1954, while the expected loss has dropped to less than
$1, 000, 000 in 2018. Results are even more pronounced for higher
quantiles: while the 95th percentile of the estimated loss distribution
was greater than $15, 000, 000 in 1954, recent estimates would be
around $3, 500, 000. We have included Figs. 11 and 12 to demonstrate
the trend of the expected normalized loss from a tornado event in
Texas and Alabama over the considered time period. Overall, we find
that the estimated distribution for losses from tornadoes has become
less skewed and heavy-tailed through time. We also demonstrated the
decreasing trend in mean loss per year and total loss per year for
different F-scale categories in Figs. 13 and 14.

4. Conclusions

In this paper, we illustrate a method that helps to estimate the loss
distribution for individual tornadoes in the U.S., using grouped data
together with individual loss data in the SPC dataset. Since predictions
about tornado frequency and severity are sometimes contradictory, our
method provides an important tool for the estimation of the individual
tornado loss distribution based on available data.

Our findings suggest that loss normalization plays an important role
in the estimation of the individual tornado loss distribution. Without
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Fig. 11. Percentile of loss distribution of Texas from 1954 to 2018 by using the results of GMM approach (Cubic fit).
Fig. 12. Percentile of loss distribution of Alabama from 1954 to 2018 by using the results of GMM approach (Cubic fit).
ormalization, losses generally increase over time due to growth of
opulation and wealth, higher loss exposure as a result of the expanding
ull’s eye effect, and inflation rather than more intense tornadoes.
e also find that the expected normalized losses decrease over time,

onsistent with the improvements in building standards and the results
eported by Tippett (2014) on tornado frequency. As found by Tippett
2014) and confirmed by our paper, the frequency of F1 tornadoes in-
reases over time while that of F2+ tornadoes decreases over time. The
verage losses from severe tornadoes are then decreasing in time, while
or less intensive tornadoes, building standard improvements would
ork to reduce tornado losses. As a result, the expected tornado losses
11
are decreasing in time. Although the expected loss has a decreasing
trend, loss variance is time varying and makes the loss events in 2011
quite possible (90th percentile of loss events in 2011 is 7.346 million
and 95th percentile of loss events in 2011 is 19.202 million).

We also apply the method to two states, Texas and Alabama, in
which tornadoes occur most frequently. Our findings suggest that the
expected loss caused by an tornado in Alabama is decreasing in time
while the expected loss in Texas is non-linear in time. These results
corroborate findings by Boruff et al. (2003) who found a declining trend
in tornado deaths and injuries and are consistent with the findings
by Moore and DeBoer (2019) that tornado losses can have different
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Fig. 13. Normalized mean loss per year for each F-scale category. The trend line is based on the all normalized loss events truncated at $1000.
Fig. 14. Normalized total loss per year for each F-scale category.
W
t

rends in different states. Different from previous studies, we examine
he dynamics of both the mean and the volatility for the log of tornado
osses and find that both of these parameters have decreased in recent
ecades, leading to the decrease in expected tornado losses. These
esults also suggest that tornado losses have trended downwards in
heir average value and also in their variation. In addition, we examine
igh quantiles of the estimated loss distribution and find that the
istribution has become less skewed and heavy-tailed over time.

Overall, our results suggest a downward trend in tornado losses for
he U.S. as a nation, while tornado losses at the state level can have
pward or downward trends. This suggests that policies that aim to
itigate tornado losses should be state specific. Tornado data at the
12

&

state level are much more limited, and the method presented in this
paper that allows to use grouped data together with individual event
data is a valuable tool for the examination of state specific tornado loss
mitigation.
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Appendix. Description of SPC database

The SPC dataset is provided by the U.S. National Weather Service. It
covers tornado losses insured in 52 states over the period 1954–2018.
It has:

• Number of tornadoes for each state for each year (variable 𝑜𝑚). A
tornado that affects several states will enter the database several
times with the same 𝑜𝑚 and different states (𝑠𝑡).

• Number of states affected by a tornado (ns). 63,229 tornadoes oc-
curred in one state, 1550 occurred in two states and 45 tornadoes
occurred in 3 states.

• F-scale (variable 𝑚𝑎𝑔) of tornadoes that is based on windspeed,
hail size. F-scale ∈ {−9, 0, 1, 2, 3, 4, 5} where −9 indicates unknown
scale. Higher F-scale indicates stronger tornadoes. Note that 1864
records of the initially unknown scale have been converted to
some scale based on property losses. These records are marked
by variable 𝑓𝑐 that receives value 1 when the scale is modified
and 0 otherwise. tornadoes with modified scales occur over the
period 1953–1982.

• Property loss in dollar amount (𝑙𝑜𝑠𝑠). Prior to 1996, losses are
recorded in categories: 0 or blank indicates unknown loss; 1
means being less than 50, 2 means $50–$500, 3 means $500–$5000,
4 means $5000–$50, 000, . . . , 8 means $50, 000, 000–$500, 000, 000,
and 9 means more than $5, 000, 000, 000.
From 1996 to 2015, property loss amounts are rounded and
recorded in terms of million. From 2016, property loss amounts
are rounded and recorded in actual dollar amounts.
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